823 resultados para Middle stratum


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the current higher education climate, there is a growing perception that the pressures associated with being an academic middle manager outweigh the perceived rewards of the position. This article investigates the personal and professional circumstances that lead academics to become middle managers by drawing on data from life history interviews undertaken with 17 male and female department heads from a range of disciplines, in a post-1992 UK university. The data suggests that experiencing conflict between personal and professional identities, manifested through different socialization experiences over time, can lead to a ‘turning point’ and a decision that affects a person’s career trajectory. Although the results of this study cannot be generalized, the findings may help other individuals and institutions move towards a firmer understanding of the academic who becomes head of department—in relation to theory, practice and research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NO/prostanoid independent, EDHF-mediated hyperpolarization and dilation in rat middle cerebral arteries is mediated solely by endothelial cell IK(Ca). However, when the NO-pathway is also active, both SK(Ca) and IK(Ca) contribute to EDHF responses. As the SK(Ca) component can be inhibited by stimulation of thromboxane A(2) (TxA(2)) TP receptors and NO has the potential ability to inhibit thromboxane synthesis, we investigated whether TxA(2) might explain loss of functional input from SK(Ca) during NOS inhibition in cerebral arteries. EXPERIMENTAL APPROACH: Rat middle cerebral arteries were mounted in a wire myograph. Endothelium-dependent responses to the PAR2 agonist, SLIGRL were assessed as simultaneous changes in smooth muscle membrane potential and tension. KEY RESULTS: Responses were obtained in the presence of L-NAME as appropriate. Inhibition of TP receptors with either ICI 192,605 or SQ 29,548, did not affect EDHF mediated hyperpolarization and relaxation, but in their presence neither TRAM-34 nor apamin (to block IK(Ca) and SK(Ca) respectively) individually affected the EDHF response. However, in combination they virtually abolished it. Similar effects were obtained in the presence of the thromboxane synthase inhibitor, furegrelate, which additionally revealed an iberiotoxin-sensitive residual EDHF hyperpolarization and relaxation in the combined presence of TRAM-34 and apamin. CONCLUSIONS AND IMPLICATIONS: In the rat middle cerebral artery, inhibition of NOS leads to a loss of the SK(Ca) component of EDHF responses. Either antagonism of TP receptors or block of thromboxane synthase restores an input through SK(Ca). These data indicate that NO normally enables SK(Ca) activity in rat middle cerebral arteries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endothelium-derived hyperpolarizing factor responses in the rat middle cerebral artery are blocked by inhibiting IKCa channels alone, contrasting with peripheral vessels where block of both IKCa and SKCa is required. As the contribution of IKCa and SKCa to endothelium-dependent hyperpolarization differs in peripheral arteries, depending on the level of arterial constriction, we investigated the possibility that SKCa might contribute to equivalent hyperpolarization in cerebral arteries under certain conditions. METHODS: Rat middle cerebral arteries (approximately 175 microm) were mounted in a wire myograph. The effect of KCa channel blockers on endothelium-dependent responses to the protease-activated receptor 2 agonist, SLIGRL (20 micromol/L), were then assessed as simultaneous changes in tension and membrane potential. These data were correlated with the distribution of arterial KCa channels revealed with immunohistochemistry. RESULTS: SLIGRL hyperpolarized and relaxed cerebral arteries undergoing variable levels of stretch-induced tone. The relaxation was unaffected by specific inhibitors of IKCa (TRAM-34, 1 micromol/L) or SKCa (apamin, 50 nmol/L) alone or in combination. In contrast, the associated smooth-muscle hyperpolarization was inhibited, but only with these blockers in combination. Blocking nitric oxide synthase (NOS) or guanylyl cyclase evoked smooth-muscle depolarization and constriction, with both hyperpolarization and relaxation to SLIGRL being abolished by TRAM-34 alone, whereas apamin had no effect. Immunolabeling showed SKCa and IKCa within the endothelium. CONCLUSIONS: In the absence of NO, IKCa underpins endothelium-dependent hyperpolarization and relaxation in cerebral arteries. However, when NOS is active SKCa contributes to hyperpolarization, whatever the extent of background contraction. These changes may have relevance in vascular disease states where NO release is compromised and when the levels of SKCa expression may be altered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A pharmacokinetic hypothesis of stratum corneum with two parallel pathways, lipophilic and porous hydrophilic, is not well documented yet. Still questionable is the localization of the pores, and the present experiments were designed to elucidate the contribution of extracellular lipids and intracellular keratin to the structure of this pathway. Percutaneous penetration of baclofen, a model zwitterion, was studied in vitro using human cadaver skin. Aqueous or ethanolic saturated solutions of the drug (Cs = 4.6 and 0.4 mg/ mL, respectively) were applied on the skin that was pretreated with: methanol/chloroform (Me/Ch) or acetone-chloroform (Ac/Ch) (1:1) mixtures, or with these solvents followed by 0.2% solution of sodium lauryl sulfate (SLS). As controls, baclofen penetration through the intact full-thickness skin was determined, and the fluxes were 0.18 ±0.08 and 0.14 ±0.07 µg/cm2/h for aqueous and ethanolic solutions, respectively. When Me/Ch was used for 1 h, an expected increase of the penetration was observed, but the lag time, Tlag, was still nearly 20 h. When the less polar mixture, Ac/Ch, was used, no flux enhancement was observed, and with ethanol as the vehicle, decreased penetration was even noted. No effect on baclofen penetration was observed when SLS was used for 1 h after delipidization of the skin was done with either the Me/Ch or Ac/Ch mixture. The results suggest that the polar pathway may be located intercellularly and comprises aqueous regions surrounded by polar lipids, which create the walls of such microchannels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stratum corneum (SC) barrier typically consists of layers of corneocytes embedded in a lipid continuum that regulates barrier function. The lipid domain containing ceramides, cholesterol, and free fatty acids provides the major pathway for most drugs permeating across SC. Penetration enhancers diminish the SC barrier function. The classic enhancer is dimethyl sulfoxide (DMSO). Its mechanisms of action remain unclear, although DMSO disrupts lipid organisation and may displace protein-bound water. Here we use confocal Raman spectroscopy to probe molecular interactions between a finite (depleting) dose of DMSO and SC, as functions of depth and time, providing novel information about residence time and location of DMSO in human SC in vivo