501 resultados para Microcebus, microsatellites
Resumo:
Adults of most marine benthic and demersal fish are site-attached, with the dispersal of their larval stages ensuring connectivity among populations. In this study we aimed to infer spatial and temporal variation in population connectivity and dispersal of a marine fish species, using genetic tools and comparing these with oceanographic transport. We focused on an intertidal rocky reef fish species, the shore clingfish Lepadogaster lepadogaster, along the southwest Iberian Peninsula, in 2011 and 2012. We predicted high levels of self-recruitment and distinct populations, due to short pelagic larval duration and because all its developmental stages have previously been found near adult habitats. Genetic analyses based on microsatellites countered our prediction and a biophysical dispersal model showed that oceanographic transport was a good explanation for the patterns observed. Adult sub-populations separated by up to 300 km of coastline displayed no genetic differentiation, revealing a single connected population with larvae potentially dispersing long distances over hundreds of km. Despite this, parentage analysis performed on recruits from one focal site within the Marine Park of Arrábida (Portugal), revealed self-recruitment levels of 2.5% and 7.7% in 2011 and 2012, respectively, suggesting that both long- and short-distance dispersal play an important role in the replenishment of these populations. Population differentiation and patterns of dispersal, which were highly variable between years, could be linked to the variability inherent in local oceanographic processes. Overall, our measures of connectivity based on genetic and oceanographic data highlight the relevance of long-distance dispersal in determining the degree of connectivity, even in species with short pelagic larval durations.
Resumo:
In the last three decades, the range of the Egyptian mongoose (Herpestes ichneumon) has increased in the Iberian Peninsula. A panel of microsatellites was used to confront the patterns of genetic diversity of the species with the scenario of its recent northward expansion in its Iberian range. Evidence of substructure and significant genetic differentiation within the studied population were recorded, with a central-northern subpopulation (CNorth) and a southern subpopulation (S). Northward range expansion was supported by the observed allelic frequencies, diversity parameters, and observed heterozygosity of the studied loci, with S showing a higher allelic diversity and a higher number of private alleles than CNorth. Patterns of isolation-by-distance and isolation-by-barrier as a result of the Tagus River were demonstrated, suggesting that the river acted as a semi-permeable barrier, possibly leading to genetic differentiation of the studied population. The observed individuals from CNorth in southern locations and individuals from S in central/northern areas might comprise evidence for long range dispersals across the studied range. A bottleneck event after population expansion was supported by a significant heterozygosity deficiency in CNorth, which is in agreement with a scenario of founder events occurring in recently colonized areas after the crossing of the Tagus River.
Resumo:
Arachis pintoi and A. repens are legumes with a high forage value that are used to feed ruminants in consortium systems. Not only do they increase the persistence and quality of pastures, they are also used for ornamental and green cover. The objective of this study was to analyze microsatellite markers in order to access the genetic diversity of 65 forage peanut germplasm accessions in the section Caulorrhizae of the genus Arachis in the Jequitinhonha, São Francisco and Paranã River valleys of Brazil. Fifty-seven accessions of A. pintoi and eight of A. repens were analyzed using 17 microsatellites, and the observed heterozygosity (HO), expected heterozygosity (HE), number of alleles per locus, discriminatory power, and polymorphism information content were all estimated. Ten loci (58.8%) were polymorphic, and 125 alleles were found in total. The HE ranged from 0.30 to 0.94, and HO values ranged from 0.03 to 0.88. By using Bayesian analysis, the accessions were genetically differentiated into three gene pools. Neither the unweighted pair group method with arithmetic mean nor a neighbor-joining analysis clustered samples into species, origin, or collection area. These results reveal a very weak genetic structure that does not form defined clusters, and that there is a high degree of similarity between the two species.
Resumo:
2016
Resumo:
Molecular characterization represents a valid support for the recovery of germoplasm, also motivated by the interest for the valorization of local productions in order to make their traceability possible. Molecular characterization is also fundamental for the individuation of misnomers in collection fields in which the different varieties are preserved. In particular, microsatellites have been used in this research to investigate the genetic diversity, inside a population and at an individual level, and the correct varietal correspondence. The research is mainly based on the study of European chestnut (Castanea sativa Mill.) cultivars to evaluate the genetic diversity and relationships in Emilia-Romagna region (Italy). A STRUCTURE analysis was carried out at European level with the allelic frequencies of the samples collected in Emilia-Romagna. Variation found at group and subgroup level may reflect a combination of historical migration/selection processes and adaptive factors to different environments between Italian and Spanish regions. In addition, a case study for the valorization of an old local variety and its re-introduction in the cultivation areas was proposed. This research was carried out by a morphological and molecular characterization of the local apple variety 'Rosa Romana'. The conservation of this variety entails the discrimination of different accessions with very similar phenotype that are present in the original cultivation area. The identification of historical trees and most adequate reference plants are fundamental steps for the correct propagation of this old variety and for the development of nursery activities. This will also promote and re-evaluate the exploitation and protection of such ancient Italian apple cultivars. This model could be in future also carried out for chestnut varieties. In conclusion, analysis with molecular markers is of fundamental importance for the protection and the maintenance of local and ancient varieties which allow to increase the allelic variability available for breeding programs.
Resumo:
Recently, the JPL's MarCO mission demonstrated that these probes are also mature enough to be employed in the deep space, even though with the limitations related to the employed commercial components. Currently, other deep space CubeSats are planned either as stand-alone missions or as companions of a traditional large probe. Therefore, developing a dedicated navigation suite is crucial to reaching the mission's goals, considering the limitations of the onboard components compared to typical deep space missions. In this framework, the LICIACube mission represents an ideal candidate test-bench, as it performs a flyby of the Didymos asteroid system subject to a strong position, epochs, and pointing requirements. This mission will also allow us to infer the capabilities of such microsatellites and highlight their limitations compared with the benefits of a lighter design and tailoring efforts. In this work, the OD and guidance methods and tools adopted for classical deep space missions have been tailored for the CubeSat applications and validated through extensive analyses. In addition, navigation procedures and interfaces have been designed in view of the operations foreseen in late 2022. The pre-launch covariance analysis has been performed to assess the mission's feasibility for the nominal trajectory and its associated uncertainties, based on conservative assumptions on the main parameters. Extensive sensitivity analyses have been carried out to understand the main mission parameters affecting the performance and to demonstrate the robustness of the designed trajectory and operation schedule in fulfilling the mission requirements. The developed system was also stressed by tuning the models to access different reconstruction methods for the maneuvers. The analysis demonstrated the feasibility of the LICIACube mission navigation in compliance with the mission requirements, compatible with the limited resources available, both in space and on the ground.