905 resultados para Methods : Statistical
Resumo:
Research endeavors on spoken dialogue systems in the 1990s and 2000s have led to the deployment of commercial spoken dialogue systems (SDS) in microdomains such as customer service automation, reservation/booking and question answering systems. Recent research in SDS has been focused on the development of applications in different domains (e.g. virtual counseling, personal coaches, social companions) which requires more sophistication than the previous generation of commercial SDS. The focus of this research project is the delivery of behavior change interventions based on the brief intervention counseling style via spoken dialogue systems. Brief interventions (BI) are evidence-based, short, well structured, one-on-one counseling sessions. Many challenges are involved in delivering BIs to people in need, such as finding the time to administer them in busy doctors' offices, obtaining the extra training that helps staff become comfortable providing these interventions, and managing the cost of delivering the interventions. Fortunately, recent developments in spoken dialogue systems make the development of systems that can deliver brief interventions possible. The overall objective of this research is to develop a data-driven, adaptable dialogue system for brief interventions for problematic drinking behavior, based on reinforcement learning methods. The implications of this research project includes, but are not limited to, assessing the feasibility of delivering structured brief health interventions with a data-driven spoken dialogue system. Furthermore, while the experimental system focuses on harmful alcohol drinking as a target behavior in this project, the produced knowledge and experience may also lead to implementation of similarly structured health interventions and assessments other than the alcohol domain (e.g. obesity, drug use, lack of exercise), using statistical machine learning approaches. In addition to designing a dialog system, the semantic and emotional meanings of user utterances have high impact on interaction. To perform domain specific reasoning and recognize concepts in user utterances, a named-entity recognizer and an ontology are designed and evaluated. To understand affective information conveyed through text, lexicons and sentiment analysis module are developed and tested.
Resumo:
Hypertrophic cardiomyopathy (HCM) is a cardiovascular disease where the heart muscle is partially thickened and blood flow is - potentially fatally - obstructed. It is one of the leading causes of sudden cardiac death in young people. Electrocardiography (ECG) and Echocardiography (Echo) are the standard tests for identifying HCM and other cardiac abnormalities. The American Heart Association has recommended using a pre-participation questionnaire for young athletes instead of ECG or Echo tests due to considerations of cost and time involved in interpreting the results of these tests by an expert cardiologist. Initially we set out to develop a classifier for automated prediction of young athletes’ heart conditions based on the answers to the questionnaire. Classification results and further in-depth analysis using computational and statistical methods indicated significant shortcomings of the questionnaire in predicting cardiac abnormalities. Automated methods for analyzing ECG signals can help reduce cost and save time in the pre-participation screening process by detecting HCM and other cardiac abnormalities. Therefore, the main goal of this dissertation work is to identify HCM through computational analysis of 12-lead ECG. ECG signals recorded on one or two leads have been analyzed in the past for classifying individual heartbeats into different types of arrhythmia as annotated primarily in the MIT-BIH database. In contrast, we classify complete sequences of 12-lead ECGs to assign patients into two groups: HCM vs. non-HCM. The challenges and issues we address include missing ECG waves in one or more leads and the dimensionality of a large feature-set. We address these by proposing imputation and feature-selection methods. We develop heartbeat-classifiers by employing Random Forests and Support Vector Machines, and propose a method to classify full 12-lead ECGs based on the proportion of heartbeats classified as HCM. The results from our experiments show that the classifiers developed using our methods perform well in identifying HCM. Thus the two contributions of this thesis are the utilization of computational and statistical methods for discovering shortcomings in a current screening procedure and the development of methods to identify HCM through computational analysis of 12-lead ECG signals.
Resumo:
Energy saving, reduction of greenhouse gasses and increased use of renewables are key policies to achieve the European 2020 targets. In particular, distributed renewable energy sources, integrated with spatial planning, require novel methods to optimise supply and demand. In contrast with large scale wind turbines, small and medium wind turbines (SMWTs) have a less extensive impact on the use of space and the power system, nevertheless, a significant spatial footprint is still present and the need for good spatial planning is a necessity. To optimise the location of SMWTs, detailed knowledge of the spatial distribution of the average wind speed is essential, hence, in this article, wind measurements and roughness maps were used to create a reliable annual mean wind speed map of Flanders at 10 m above the Earth’s surface. Via roughness transformation, the surface wind speed measurements were converted into meso- and macroscale wind data. The data were further processed by using seven different spatial interpolation methods in order to develop regional wind resource maps. Based on statistical analysis, it was found that the transformation into mesoscale wind, in combination with Simple Kriging, was the most adequate method to create reliable maps for decision-making on optimal production sites for SMWTs in Flanders (Belgium).
Resumo:
Shape-based registration methods frequently encounters in the domains of computer vision, image processing and medical imaging. The registration problem is to find an optimal transformation/mapping between sets of rigid or nonrigid objects and to automatically solve for correspondences. In this paper we present a comparison of two different probabilistic methods, the entropy and the growing neural gas network (GNG), as general feature-based registration algorithms. Using entropy shape modelling is performed by connecting the point sets with the highest probability of curvature information, while with GNG the points sets are connected using nearest-neighbour relationships derived from competitive hebbian learning. In order to compare performances we use different levels of shape deformation starting with a simple shape 2D MRI brain ventricles and moving to more complicated shapes like hands. Results both quantitatively and qualitatively are given for both sets.
Resumo:
Harmful algal blooms (HABs) are a natural global phenomena emerging in severity and extent. Incidents have many economic, ecological and human health impacts. Monitoring and providing early warning of toxic HABs are critical for protecting public health. Current monitoring programmes include measuring the number of toxic phytoplankton cells in the water and biotoxin levels in shellfish tissue. As these efforts are demanding and labour intensive, methods which improve the efficiency are essential. This study compares the utilisation of a multitoxin surface plasmon resonance (multitoxin SPR) biosensor with enzyme-linked immunosorbent assay (ELISA) and analytical methods such as high performance liquid chromatography with fluorescence detection (HPLC-FLD) and liquid chromatography–tandem mass spectrometry (LC–MS/MS) for toxic HAB monitoring efforts in Europe. Seawater samples (n = 256) from European waters, collected 2009–2011, were analysed for biotoxins: saxitoxin and analogues, okadaic acid and dinophysistoxins 1/2 (DTX1/DTX2) and domoic acid responsible for paralytic shellfish poisoning (PSP), diarrheic shellfish poisoning (DSP) and amnesic shellfish poisoning (ASP), respectively. Biotoxins were detected mainly in samples from Spain and Ireland. France and Norway appeared to have the lowest number of toxic samples. Both the multitoxin SPR biosensor and the RNA microarray were more sensitive at detecting toxic HABs than standard light microscopy phytoplankton monitoring. Correlations between each of the detection methods were performed with the overall agreement, based on statistical 2 × 2 comparison tables, between each testing platform ranging between 32% and 74% for all three toxin families illustrating that one individual testing method may not be an ideal solution. An efficient early warning monitoring system for the detection of toxic HABs could therefore be achieved by combining both the multitoxin SPR biosensor and RNA microarray.
Resumo:
Harmful algal blooms (HABs) are a natural global phenomena emerging in severity and extent. Incidents have many economic, ecological and human health impacts. Monitoring and providing early warning of toxic HABs are critical for protecting public health. Current monitoring programmes include measuring the number of toxic phytoplankton cells in the water and biotoxin levels in shellfish tissue. As these efforts are demanding and labour intensive, methods which improve the efficiency are essential. This study compares the utilisation of a multitoxin surface plasmon resonance (multitoxin SPR) biosensor with enzyme-linked immunosorbent assay (ELISA) and analytical methods such as high performance liquid chromatography with fluorescence detection (HPLC-FLD) and liquid chromatography–tandem mass spectrometry (LC–MS/MS) for toxic HAB monitoring efforts in Europe. Seawater samples (n = 256) from European waters, collected 2009–2011, were analysed for biotoxins: saxitoxin and analogues, okadaic acid and dinophysistoxins 1/2 (DTX1/DTX2) and domoic acid responsible for paralytic shellfish poisoning (PSP), diarrheic shellfish poisoning (DSP) and amnesic shellfish poisoning (ASP), respectively. Biotoxins were detected mainly in samples from Spain and Ireland. France and Norway appeared to have the lowest number of toxic samples. Both the multitoxin SPR biosensor and the RNA microarray were more sensitive at detecting toxic HABs than standard light microscopy phytoplankton monitoring. Correlations between each of the detection methods were performed with the overall agreement, based on statistical 2 × 2 comparison tables, between each testing platform ranging between 32% and 74% for all three toxin families illustrating that one individual testing method may not be an ideal solution. An efficient early warning monitoring system for the detection of toxic HABs could therefore be achieved by combining both the multitoxin SPR biosensor and RNA microarray.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
La stratégie actuelle de contrôle de la qualité de l’anode est inadéquate pour détecter les anodes défectueuses avant qu’elles ne soient installées dans les cuves d’électrolyse. Des travaux antérieurs ont porté sur la modélisation du procédé de fabrication des anodes afin de prédire leurs propriétés directement après la cuisson en utilisant des méthodes statistiques multivariées. La stratégie de carottage des anodes utilisée à l’usine partenaire fait en sorte que ce modèle ne peut être utilisé que pour prédire les propriétés des anodes cuites aux positions les plus chaudes et les plus froides du four à cuire. Le travail actuel propose une stratégie pour considérer l’histoire thermique des anodes cuites à n’importe quelle position et permettre de prédire leurs propriétés. Il est montré qu’en combinant des variables binaires pour définir l’alvéole et la position de cuisson avec les données routinières mesurées sur le four à cuire, les profils de température des anodes cuites à différentes positions peuvent être prédits. Également, ces données ont été incluses dans le modèle pour la prédiction des propriétés des anodes. Les résultats de prédiction ont été validés en effectuant du carottage supplémentaire et les performances du modèle sont concluantes pour la densité apparente et réelle, la force de compression, la réactivité à l’air et le Lc et ce peu importe la position de cuisson.
Resumo:
In physics, one attempts to infer the rules governing a system given only the results of imperfect measurements. Hence, microscopic theories may be effectively indistinguishable experimentally. We develop an operationally motivated procedure to identify the corresponding equivalence classes of states, and argue that the renormalization group (RG) arises from the inherent ambiguities associated with the classes: one encounters flow parameters as, e.g., a regulator, a scale, or a measure of precision, which specify representatives in a given equivalence class. This provides a unifying framework and reveals the role played by information in renormalization. We validate this idea by showing that it justifies the use of low-momenta n-point functions as statistically relevant observables around a Gaussian hypothesis. These results enable the calculation of distinguishability in quantum field theory. Our methods also provide a way to extend renormalization techniques to effective models which are not based on the usual quantum-field formalism, and elucidates the relationships between various type of RG.
Resumo:
Abstract: Quantitative Methods (QM) is a compulsory course in the Social Science program in CEGEP. Many QM instructors assign a number of homework exercises to give students the opportunity to practice the statistical methods, which enhances their learning. However, traditional written exercises have two significant disadvantages. The first is that the feedback process is often very slow. The second disadvantage is that written exercises can generate a large amount of correcting for the instructor. WeBWorK is an open-source system that allows instructors to write exercises which students answer online. Although originally designed to write exercises for math and science students, WeBWorK programming allows for the creation of a variety of questions which can be used in the Quantitative Methods course. Because many statistical exercises generate objective and quantitative answers, the system is able to instantly assess students’ responses and tell them whether they are right or wrong. This immediate feedback has been shown to be theoretically conducive to positive learning outcomes. In addition, the system can be set up to allow students to re-try the problem if they got it wrong. This has benefits both in terms of student motivation and reinforcing learning. Through the use of a quasi-experiment, this research project measured and analysed the effects of using WeBWorK exercises in the Quantitative Methods course at Vanier College. Three specific research questions were addressed. First, we looked at whether students who did the WeBWorK exercises got better grades than students who did written exercises. Second, we looked at whether students who completed more of the WeBWorK exercises got better grades than students who completed fewer of the WeBWorK exercises. Finally, we used a self-report survey to find out what students’ perceptions and opinions were of the WeBWorK and the written exercises. For the first research question, a crossover design was used in order to compare whether the group that did WeBWorK problems during one unit would score significantly higher on that unit test than the other group that did the written problems. We found no significant difference in grades between students who did the WeBWorK exercises and students who did the written exercises. The second research question looked at whether students who completed more of the WeBWorK exercises would get significantly higher grades than students who completed fewer of the WeBWorK exercises. The straight-line relationship between number of WeBWorK exercises completed and grades was positive in both groups. However, the correlation coefficients for these two variables showed no real pattern. Our third research question was investigated by using a survey to elicit students’ perceptions and opinions regarding the WeBWorK and written exercises. Students reported no difference in the amount of effort put into completing each type of exercise. Students were also asked to rate each type of exercise along six dimensions and a composite score was calculated. Overall, students gave a significantly higher score to the written exercises, and reported that they found the written exercises were better for understanding the basic statistical concepts and for learning the basic statistical methods. However, when presented with the choice of having only written or only WeBWorK exercises, slightly more students preferred or strongly preferred having only WeBWorK exercises. The results of this research suggest that the advantages of using WeBWorK to teach Quantitative Methods are variable. The WeBWorK system offers immediate feedback, which often seems to motivate students to try again if they do not have the correct answer. However, this does not necessarily translate into better performance on the written tests and on the final exam. What has been learned is that the WeBWorK system can be used by interested instructors to enhance student learning in the Quantitative Methods course. Further research may examine more specifically how this system can be used more effectively.
Resumo:
Rationale: In line with complex intervention development, this research takes a systematic approach to examining the feasibility and acceptability of delivering Mindfulness-Based Cognitive Therapy (MBCT) to older people who experience symptoms of depression. Methods: A mixed methods approach was adopted in line with recommendations made by the MRC Complex Intervention Development framework. Quantitative and qualitative methods were combined by administering questionnaires as well as conducting post intervention interviews. A number of trial feasibility factors were examined such as recruitment and attrition rates. Qualitative data was analysed using Braun and Clarke’s thematic analysis framework. Results: Nine participants started the MBCT intervention and six completed the 8-week programme. The results suggest that MBCT for older people is feasible and acceptable. Participants reported improved mindfulness skills. Participants responded positively to being asked to take part in research and appeared to particularly value the group delivery format of the intervention. Conclusions: MBCT is both feasible and acceptable for older people experiencing symptoms of depression. Further research is required with larger sample sizes to allow for more robust statistical exploration of outcome measures, including mechanisms of change.
Resumo:
This dissertation applies statistical methods to the evaluation of automatic summarization using data from the Text Analysis Conferences in 2008-2011. Several aspects of the evaluation framework itself are studied, including the statistical testing used to determine significant differences, the assessors, and the design of the experiment. In addition, a family of evaluation metrics is developed to predict the score an automatically generated summary would receive from a human judge and its results are demonstrated at the Text Analysis Conference. Finally, variations on the evaluation framework are studied and their relative merits considered. An over-arching theme of this dissertation is the application of standard statistical methods to data that does not conform to the usual testing assumptions.