620 resultados para Mesocellular foam
Resumo:
Research on thin nanostructured crystalline TiO2 films has attracted considerable interests because of their intriguing physical properties and potential applications in photovoltaics. Nanostructured TiO2 film plays an important role in the TiO2 based dye-sensitized solar cells because they act as a substrate for the adsorption of dye molecules and a matrix for the transportation of electrons as well. Thus they can influence the solar cell performance significantly. Consequently, the control of the morphology including the shape, size and size distribution of the TiO2 nanostructures is critical to tune and optimize the performance of the solar cells. To control the TiO2 morphology, a strategy using amphiphilic block copolymer as templating agent coupled with sol-gel chemistry has been applied. Especially, a good-poor solvent pair induced phase separation process has been developed to guide the microphase separation behavior of the block copolymers. The amphiphilic block copolymers used include polystyrene-block-poly (ethylene oxide) (PS-b-PEO), poly (methyl methacrylate)-block-poly (ethylene oxide) (PMMA-b-PEO), and poly (ethylene oxide)-block-polystyrene-block-poly (ethylene oxide) (PEO-b-PS-b-PEO). The block copolymer undergoes a good-poor-solvent pair induced phase separation in a mixed solution of 1, 4-dioxane or N, N’-dimethyl formamide (DMF), concentrated hydrochloric acid (HCl) and Titanium tetraisopropoxide (TTIP). Specifically, in the system of PS-b-PEO, a morphology phase diagram of the inorganic-copolymer composite films was mapped by adjusting the weight fractions among 1, 4-dioxane, HCl, and TTIP in solution. The amorphous TiO2 within the titania-block copolymer composite films was crystallized by calcination at temperatures above 400C, where the organic block copolymer was simultaneously burned away. This strategy is further extended to other amphiphilic block copolymers of PMMA-b-PEO and PEO-b-PS-b-PEO, where the morphology of TiO2 films can also be controlled. The local and long range structures of the titania films were investigated by the combination of imaging techniques (AFM, SEM) and x-ray scattering techniques (x-ray reflectivity and grazing incidence small-angle x-ray scattering). Based on the knowledge of the morphology control, the crystalline TiO2 nanostructured films with different morphologies were introduced into solid state dye-sensitized solar cells. It has been found that all of the morphologies help to improve the performance of the solar cells. Especially, clustered nanoparticles, worm-like structures, foam-like structures, large collapsed nanovesicles show more pronounced performance improvement than other morphologies such as nanowires, flakes, and nanogranulars.
Resumo:
In this research work the optimization of the electrochemical system of LDHs as catalytic precursors on FeCrAlY foams was carried out. Preliminary sintheses were performed on flat surfaces in order to easily characterize the deposited material. From the study of pH evolution vs time at different cathodic potentials applied to a Pt electrode, the theoretical best working conditions for the synthesis of single hydroxides and LDH compounds was achieved. In order to define the optimal potential for the synthesis of a particular LDH compound, the collected data were compared with the interval of precipitation determined by titration with NaOH. However, the characterization of the deposited material on Pt surfaces did not confirm the deposition of a pure and homogeneous LDH phase during the synthesis. Instead a sequential deposition linked to the pH of precipitation of the involved elements is observed. The same behavior was observed during the synthesis of the RhMgAl LDH on FeCrAlY foam as catalytic precursor. Several parameters were considered in order to optimize the synthesis.. The development of electrochemical cells with different feature, such as the counter electrode dimensions or the contact between the foam and the potentiostat, had been carried out in order to obtain a better coating of the foam. The influence of the initial pH of the electrolyte solution, of the applied potential, of the composition of the electrolytic solution were investigated in order to improve a better coating of the catalyst support. Catalytic tests were performed after the calcination of the deposited foam for the CPO and SR reactions, showing an improve of performances along with optimization of the precursors synthesis conditions.
Resumo:
In hybrid organic solar cells a blocking layer between transparent electrode and nanocrystalline titania particles is essential to prevent short-circuiting and current loss through recombination at the electrode interface. Here the preparation of a uniform hybrid blocking layer which is composed of conducting titania nanoparticles embedded in an insulating polymer derived ceramic is presented. This blocking layer is prepared by sol-gel chemistry where an amphiphilic block copolymer is used as a templating agent. A novel poly(dimethylsiloxane) containing amphiphilic block copolymer poly(ethyleneglycol)methylethermethacrylate-block-poly(dimethylsiloxane)-block-poly(ethyleneglycol)methylethermethacrylate has been synthesized to act as the templating agent. Plasma treatment uncovered titania surface from any polymer. Annealing at 450°C under nitrogen resulted in anatase titania with polymer derived silicon oxycarbide ceramic. Electrical characterization by conductive scanning probe microscopy experiments revealed a percolating titania network separated by an insulating ceramic matrix. Scanning Kelvin probe force microscopy showed predominant presence of titania particles on the surface creating a large surface area for dye absorption. The uniformity of the percolating structures was proven by microbeam grazing incidence small angle x-ray scattering. First applications in hybrid organic solar cells in comparison with conventional titanium dioxide blocking layer containing devices revealed 15 fold increases in corresponding efficiencies. Poly(dimethylsiloxane)-block-poly(ethyleneglycol)methylethermethacrylate and poly(ethyleneoxide)-poly(dimethylsiloxane)methylmethacrylate diblock copolymers were also synthesized. Their titania nanocomposite films were compared with the integrated blocking layer. Liner poly(ethyleneoxide) containing diblock copolymer resulted in highly ordered foam like structures. The effect of heating temperature rise to 600°C and 1000°C on titania morphology was investigated by scanning electron and force microscopy and x-ray scattering. Sol-gel contents, hydrochloric acid, titania precursor and amphiphilic triblock copolymer were altered to see their effect on titania morphology. Increase in block copolymer content resulted in titania particles of diameter 15-20 nm.
Resumo:
Lo studio presentato in questa sede concerne applicazioni di saldatura LASER caratterizzate da aspetti di non-convenzionalità ed è costituito da tre filoni principali. Nel primo ambito di intervento è stata valutata la possibilità di effettuare saldature per fusione, con LASER ad emissione continua, su pannelli Aluminum Foam Sandwich e su tubi riempiti in schiuma di alluminio. Lo studio ha messo in evidenza numerose linee operative riguardanti le problematiche relative alla saldatura delle pelli esterne dei componenti ed ha dimostrato la fattibilità relativa ad un approccio di giunzione LASER integrato (saldatura seguita da un post trattamento termico) per la realizzazione della giunzione completa di particolari tubolari riempiti in schiuma con ripristino della struttura cellulare all’interfaccia di giunzione. Il secondo ambito di intervento è caratterizzato dall’applicazione di una sorgente LASER di bassissima potenza, operante in regime ad impulsi corti, nella saldatura di acciaio ad elevato contenuto di carbonio. Lo studio ha messo in evidenza come questo tipo di sorgente, solitamente applicata per lavorazioni di ablazione e marcatura, possa essere applicata anche alla saldatura di spessori sub-millimetrici. In questa fase è stato messo in evidenza il ruolo dei parametri di lavoro sulla conformazione del giunto ed è stata definita l’area di fattibilità del processo. Lo studio è stato completato investigando la possibilità di applicare un trattamento LASER dopo saldatura per addolcire le eventuali zone indurite. In merito all’ultimo ambito di intervento l’attività di studio si è focalizzata sull’utilizzo di sorgenti ad elevata densità di potenza (60 MW/cm^2) nella saldatura a profonda penetrazione di acciai da costruzione. L’attività sperimentale e di analisi dei risultati è stata condotta mediante tecniche di Design of Experiment per la valutazione del ruolo preciso di tutti i parametri di processo e numerose considerazioni relative alla formazione di cricche a caldo sono state suggerite.
Resumo:
The relatively young discipline of astronautics represents one of the scientifically most fascinating and technologically advanced achievements of our time. The human exploration in space does not offer only extraordinary research possibilities but also demands high requirements from man and technology. The space environment provides a lot of attractive experimental tools towards the understanding of fundamental mechanism in natural sciences. It has been shown that especially reduced gravity and elevated radiation, two distinctive factors in space, influence the behavior of biological systems significantly. For this reason one of the key objectives on board of an earth orbiting laboratory is the research in the field of life sciences, covering the broad range from botany, human physiology and crew health up to biotechnology. The Columbus Module is the only European low gravity platform that allows researchers to perform ambitious experiments in a continuous time frame up to several months. Biolab is part of the initial outfitting of the Columbus Laboratory; it is a multi-user facility supporting research in the field of biology, e.g. effect of microgravity and space radiation on cell cultures, micro-organisms, small plants and small invertebrates. The Biolab IEC are projects designed to work in the automatic part of Biolab. In this moment in the TO-53 department of Airbus Defence & Space (formerly Astrium) there are two experiments that are in phase C/D of the development and they are the subject of this thesis: CELLRAD and CYTOSKELETON. They will be launched in soft configuration, that means packed inside a block of foam that has the task to reduce the launch loads on the payload. Until 10 years ago the payloads which were launched in soft configuration were supposed to be structural safe by themselves and a specific structural analysis could be waived on them; with the opening of the launchers market to private companies (that are not under the direct control of the international space agencies), the requirements on the verifications of payloads are changed and they have become much more conservative. In 2012 a new random environment has been introduced due to the new Space-X launch specification that results to be particularly challenging for the soft launched payloads. The last ESA specification requires to perform structural analysis on the payload for combined loads (random vibration, quasi-steady acceleration and pressure). The aim of this thesis is to create FEM models able to reproduce the launch configuration and to verify that all the margins of safety are positive and to show how they change because of the new Space-X random environment. In case the results are negative, improved design solution are implemented. Based on the FEM result a study of the joins has been carried out and, when needed, a crack growth analysis has been performed.
Resumo:
Im Rahmen dieser Arbeit wurde der Einfluss zweier möglicher Biomarker auf die Atherosklerose untersucht.rnMilk fat globule-EGF factor 8 (MFG-E8, Lactadherin) ist ein Glycoprotein, das vornehmlich von Makrophagen, glatten Muskelzellen und Endothelzellen sezerniert wird. MFG-E8-/--Mäuse zeigen vermehrt apoptotische Zellen in der atherosklerotischen Plaque, verstärkte Inflammationszeichen und vergrößerte Läsionen. In situ-Hybridisierung und Immunfluoreszenz zeigen eine starke Lactadherin-Expression in den Schaumzellen atherosklerotischer Plaques von Apo E-/-, Apo E-/-/GPx 1-/-und LDLR-/- Mäusen, vor allem in der Nähe des Lipid Core. Dort kolokalisiert Lactadherin mit dem Makrophagenmarker CD 68 und dem Chemokin Fraktalkin, das die MFG-E8 Sekretion stimuliert und so die Phagocytose forciert. Untersuchungen mittels RTD-PCR ergaben, dass Peritonealmakrophagen der Genotypen Apo E-/-, Apo E-/-/GPx 1-/- und GPx 1-/-, deren Gemeinsamkeit eine höhere Empfindlichkeit gegenüberrnoxidativem Stress ist, mehr Lactadherin exprimieren als andere Genotypen (B6, LDLR-/-). Die Inkubation muriner oder humaner Makrophagen mit oxLDL und eLDL hat keinen Einfluss auf die Expression der MFG-E8 mRNA. Der Kontakt mit apoptotischer Zellen hingegen erhöht die Expression signifikant. Lactadherin ist entscheidend für die effektive Phagozytose apoptotischer Zellen in der atherosklerotischen Läsion. Seine Expression wird vermutlich durch die Apoptose in der Nähe liegender Zellen und das verstärkte Vorkommen von ROS reguliert. Macrophage stimulating protein (MSP) übt Einfluss auf Migration, Proliferation und Phagocytose von Makrophagen aus. Seine Beteiligung an inflammatorischen Vorgängen und der Karzinogenese ist intensiv untersucht worden, nicht jedoch der Einfluss auf die Atherosklerose. Es ist bekannt, dass der SNP rs3197999 mit chronisch entzündlichen Darmerkrankungen (CED) assoziiert ist. Zudem geht er vermutlich mit einem erniedrigten Atheroskleroserisiko einher. Der Polymorphismus c2078t hat den Aminosäureaustausch R689C zur Folge. Rekombinant erzeugtes, mutantes und wildtypisches MSP induziert Migration und Proliferation bei THP-1-Makrophagen. MSPmut vermittelt dies jedoch wesentliche effektiver als MSPwt. Apoptose hingegen wird durch keine der Formen induziert. R689C führt zu einem “gain of function” des MSP-Proteins in Bezug auf die Proliferations- und Migrationsfähigkeit von Makrophagen und verändert vermutlich deren Cytokinfreisetzung. Dies führt möglicherweise zu einer erhöhten Phagocytoseeffizienz in der atherosklerotischen Läsion (erniedrigtes Atherosklerose-Risiko), und zu einer aberranten immunologischen Reaktion im Rahmen der CED (erhöhtes CED-Risiko).
Resumo:
One of the basic concepts of molecular self-assembly is that the morphology of the aggregate is directly related to the structure and interaction of the aggregating molecules. This is not only true for the aggregation in bulk solution, but also for the formation of Langmuir films at the air/water interface. Thus, molecules at the interface do not necessarily form flat monomolecular films but can also aggregate into multilayers or surface micelles. In this context, various novel synthetic molecules were investigated in terms of their morphology at the air/water interface and in transferred films. rnFirst, the self-assembly of semifluorinated alkanes and their molecular orientation at the air/water interface and in transferred films was studied employing scanning force microscopy (SFM) and Kelvin potential force microscopy. Here it was found, that the investigated semifluorinated alkanes aggregate to form circular surface micelles with a diameter of 30 nm, which are constituted of smaller muffin-shaped subunits with a diameter of 10 nm. A further result is that the introduction of an aromatic core into the molecular structure leads to the formation of elongated surface micelles and thus implements a directionality to the self-assembly. rnSecond, the self-assembly of two different amphiphilic hybrid materials containing a short single stranded desoxyribonucleic acid (DNA) sequence was investigated at the air/water interface. The first molecule was a single stranded DNA (11mer) molecule with two hydrophobically modified 5-(dodec-1-ynyl)uracil nucleobases at the terminal 5'-end of the oligonucleotide sequence. Isotherm measurements revealed the formation of semi-stable films at the air/water interface. SFM imaging of films transferred via Langmuir-Blodgett technique supported this finding and indicated mono-, bi- and multilayer formation, according to the surface pressure applied upon transfer. Within these films, the hydrophilic DNA sequence was oriented towards air covering 95% of the substrate.rnSimilar results were obtained with a second type of amphiphile, a DNA block copolymer. Furthermore, the potential to perform molecular recognition experiments at the air/water interface with these DNA hybrid materials was evaluated.rnThird, polyglycerol ester molecules (PGE), which are known to form very stable foams, were studies. Aim was to elucidate the molecular structure of PGE molecules at the air/water interface in order to comprehend the foam stabilization mechanism. Several model systems mimicking the air/water interface of a PGE foam and methods for a noninvasive transfer were tested and characterized by SFM. It could be shown, that PGE stabilizes the air/water interface of a foam bubble by formation of multiple surfactant layers. Additionally, a new transfer technique, the bubble film transfer was established and characterized by high speed camera imaging.The results demonstrate the diversity of structures, which can be formed by amphiphilic molecules at the air/water interface and after film transfer, as well as the impact of the chemical structure on the aggregate morphology.
Resumo:
Die antioxidative Aktivität des Enzyms Glutathionperoxidase-1 (GPx-1) schützt vor Atherosklerose und ihren Folgeerkrankungen. In einer Vorstudie konnten wir zeigen, dass der Mangel an GPx-1 die Atheroskleroseentwicklung in Apolipoprotein E defizienten (ApoE-/-) Mäusen beschleunigt und modifiziert. Allerdings sind die Verteilung der GPx-1 in atherosklerotischen Läsionen und die Mechanismen für den erhöhten Makrophagengehalt in der Läsion noch nicht geklärt. Deshalb haben wir (1) die in-situ Expression der GPx-Isoformen in atherosklerotischen Läsionen von GPx-1-/-ApoE-/- und ApoE-/- Mäusen und (2) den Einfluss der GPx-1 Defizienz auf die Schaumzellbildung und Proliferation der Peritonealmakrophagen in ApoE-/- Mäusen untersucht. Die GPx-1-/-ApoE-/- und ApoE-/- Weibchen wurden für 6 und 12 Wochen auf einer atherogenen „Western-type“ Diät gehalten. Die in situ-Hybridisierung zeigte, dass die verschiedenen Isoformen der GPx (GPx-1, GPx-3, GPx-4) vorwiegend in Makrophagen, nicht jedoch in glatten Muskelzellen der atherosklerotischen Läsionen von ApoE-/- Mäusen exprimiert wurden. Für die in vitro Untersuchungen wurden 5 Monate alte, GPx-1 defiziente und Wildtyp-Mäuse, gehalten auf Normaldiät, verwendet. Die Öl-Rot-O Färbung zeigte, dass die GPx-1 Defizienz die OxLDL (oxidiertes LDL) - und E-LDL (enzymatisch modifiziertes LDL) - induzierte Schaumzellbildung förderte. Darüber hinaus war die OxLDL-induzierte Cholesterinakkumulation (zellulärer Cholesterinester/ Cholesterin-Gehalt) in GPx-1 defizienten Makrophagen verstärkt, sodass ein Mangel an GPx-1 die Aufnahme von OxLDL durch Monozyten und damit die Umwandlung in Schaumzellen beschleunigt. Hinsichtlich der Proliferation zeigte sich, dass MCSF (Macrophage Colony-Stimulating Facotr) ein stärkerer Stimulus als OxLDL ist. Ein Mangel an GPx-1 fördert die Proliferation zusätzlich. Daran ist die ERK1/2 (extracellular-signal regulated kinase 1/2) - Kaskade beteiligt, denn es wurde eine schnelle Phosphorylierung der ERK1/2-Kaskade durch MCSF und/oder OxLDL nachgewiesen. Entsprechend reduzieren ERK1/2-Inhibitoren die proliferative Aktivität der Makrophagen. Die Hemmung der p38-MAPK (p38 mitogen-activated protein kinase) führt zur vermehrten Proliferation und bei gleichzeitig verringerter Caspase-3/7 Aktivität der Makrophagen unabhängig von der Expression der GPx-1. Ein Mangel an GPx-1 hat auch keinen Einfluss auf die MCSF-vermittelte Aktivierung der p38-MAPK und JNK (c-Jun N-terminal kinase). Zusammenfassend läßt sich feststellen, dass die GPx-1-Defizienz einen signifikanten Einfluss auf die Schaumzellbildung und Proliferation von Makrophagen hat, was zur Beschleunigung der Atherosklerose und zu vermehrter Zellularität der entstehenden atherosklerotischen Läsionen führt. Die Proliferation wird über den ERK1/2 Signal-transduktionsweg positiv und über den p38-MAPK Weg negativ reguliert, wobei die ERK1/2-Kaskade empfindlich gegenüber oxidativem Stress bei GPx-1-Defizienz ist.
Resumo:
Hybrid Elektrodenmaterialien (HEM) sind der Schlüssel zu grundlegenden Fortschritten in der Energiespeicherung und Systemen zur Energieumwandlung, einschließlich Lithium-Ionen-Batterien (LiBs), Superkondensatoren (SCs) und Brennstoffzellen (FCs). Die faszinierenden Eigenschaften von Graphen machen es zu einem guten Ausgangsmaterial für die Darstellung von HEM. Jedoch scheitern traditionelle Verfahren zur Herstellung von Graphen-HEM (GHEM) scheitern häufig an der fehlenden Kontrolle über die Morphologie und deren Einheitlichkeit, was zu unzureichenden Grenzflächenwechselwirkungen und einer mangelhaften Leistung des Materials führt. Diese Arbeit konzentriert sich auf die Herstellung von GHEM über kontrollierte Darstellungsmethoden und befasst sich mit der Nutzung von definierten GHEM für die Energiespeicherung und -umwandlung. Die große Volumenausdehnung bildet den Hauptnachteil der künftigen Lithium-Speicher-Materialien. Als erstes wird ein dreidimensionaler Graphen Schaumhybrid zur Stärkung der Grundstruktur und zur Verbesserung der elektrochemischen Leistung des Fe3O4 Anodenmaterials dargestellt. Der Einsatz von Graphenschalen und Graphennetzen realisiert dabei einen doppelten Schutz gegen die Volumenschwankung des Fe3O4 bei dem elektrochemischen Prozess. Die Leistung der SCs und der FCs hängt von der Porenstruktur und der zugänglichen Oberfläche, beziehungsweise den katalytischen Stellen der Elektrodenmaterialien ab. Wir zeigen, dass die Steuerung der Porosität über Graphen-basierte Kohlenstoffnanoschichten (HPCN) die zugängliche Oberfläche und den Ionentransport/Ladungsspeicher für SCs-Anwendungen erhöht. Desweiteren wurden Stickstoff dotierte Kohlenstoffnanoschichten (NDCN) für die kathodische Sauerstoffreduktion (ORR) hergestellt. Eine maßgeschnittene Mesoporosität verbunden mit Heteroatom Doping (Stickstoff) fördert die Exposition der aktiven Zentren und die ORR-Leistung der metallfreien Katalysatoren. Hochwertiges elektrochemisch exfoliiertes Graphen (EEG) ist ein vielversprechender Kandidat für die Darstellung von GHEM. Allerdings ist die kontrollierte Darstellung von EEG-Hybriden weiterhin eine große Herausforderung. Zu guter Letzt wird eine Bottom-up-Strategie für die Darstellung von EEG Schichten mit einer Reihe von funktionellen Nanopartikeln (Si, Fe3O4 und Pt NPs) vorgestellt. Diese Arbeit zeigt einen vielversprechenden Weg für die wirtschaftliche Synthese von EEG und EEG-basierten Materialien.
Resumo:
Multiple sclerosis (MS) causes a broad range of neurological symptoms. Most common is poor balance control. However, knowledge of deficient balance control in mildly affected MS patients who are complaining of balance impairment but have normal clinical balance tests (CBT) is limited. This knowledge might provide insights into the normal and pathophysiological mechanisms underlying stance and gait. We analysed differences in trunk sway between mildly disabled MS patients with and without subjective balance impairment (SBI), all with normal CBT. The sway was measured for a battery of stance and gait balance tests (static and dynamic posturography) and compared to that of age- and sex-matched healthy subjects. Eight of 21 patients (38%) with an Expanded Disability Status Scale of 1.0-3.0 complained of SBI during daily activities. For standing on both legs with eyes closed on a normal and on a foam surface, patients in the no SBI group showed significant differences in the range of trunk roll (lateral) sway angle and velocity, compared to normal persons. Patients in the SBI group had significantly greater lateral sway than the no SBI group, and sway was also greater than normal in the pitch (anterior-posterior) direction. Sway for one-legged stance on foam was also greater in the SBI group compared to the no SBI and normal groups. We found a specific laterally directed impairment of balance in all patients, consistent with a deficit in proprioceptive processing, which was greater in the SBI group than in the no SBI group. This finding most likely explains the subjective symptoms of imbalance in patients with MS with normal CBT.
Resumo:
The objective of the study was to review the literature reporting visual disturbance (VD) following sclerotherapy for varicose veins. Underlying mechanisms will be discussed. A literature search of the databases Medline and Google Scholar was performed. Original articles including randomized trials, case series and case reports reporting VD in humans following sclerotherapy for varicose veins were included. Additional references were also obtained if they had been referenced in related publications. The search yielded 4948 results of which 25 reports were found to meet the inclusion criteria. In larger series with at least 500 included patients the prevalence of VD following sclerotherapy ranges from 0.09% to 2%. In most reports foam sclerotherapy was associated with VD (19); exclusive use of liquid sclerosant was reported in two cases, some reports included foam and liquid sclerosant (4). There were no persistent visual disorders reported. VD occurred with polidocanol and sodium tetradecyl sulphate in different concentrations (0.25-3%). Various forms of foam preparation including various ways of foam production and the liquid - air ratio (1 or 2 parts of liquid mixed with 3, 4 or 5 parts of air) were reported in association with the occurrence of VD. VDs following sclerotherapy for varicose veins are rare and all reported events were transient. Bubble embolism or any kind of embolism seems unlikely to be the only underlying mechanism. A systemic inflammatory response following sclerotherapy has been suggested. Further research to clarify the mechanism of action of sclerosants is required.
Resumo:
Perilipin-1 surrounds lipid droplets in both adipocytes and in atheroma plaque foam cells and controls access of lipases to the lipid core. In hemodialysis (HD) patients, dyslipidemia, malnutrition, inflammation and atherosclerosis are common. Thirty-six HD patients and 28 healthy volunteers were enrolled into the study. Ten HD patients suffered from coronary heart disease (CHD). Perilipin-1, triglycerides, total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol (HDL-C), body mass index, albumin, geriatric nutritional risk index, normalized protein catabolic rate, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were measured. Perilipin-1 did not differ between HD patients and healthy volunteers. IL-6 and TNF-α were higher in HD patients. The evaluated nutritional markers and the markers of inflammation did not differ between HD patients with high perilipin-1 levels and HD patients with low perilipin-1 levels. Regarding the lipid profile, only HDL-C differed between HD patients with high perilipin-1 levels and HD patients with low perilipin-1 levels, and it was higher in the first subgroup. Perilipin-1 was significantly higher in HD patients without CHD. Perilipin-1 is detectable in the serum of HD patients and it is associated with increased HDL-C and decreased incidence of CHD.
Resumo:
A numerous studies suggest that Vitamin E has a preventive role in atherosclerosis, although the mechanism of action still remains unclear. CD36, a member of the scavenger receptor family is centrally involved in the uptake of oxidized low density proteins (oxLDLs) from bloodstream. During the atherosclerotic process, the lipid cargo of oxLDL accumulates in macrophages and smooth muscle cells, inducing their pathological conversion to foam cells. In the present study, we investigate the role of Vitamin E on CD36 expression in an in vivo model. Atherosclerosis was induced by a 2% cholesterol containing Vitamin E poor diet. Three groups of six rabbits each were studied. The first group (control) was fed on Vitamin E poor diet. The second group was fed with Vitamin E poor diet containing 2% cholesterol and the rabbits in the third group were fed with Vitamin E poor diet containing 2% cholesterol and received injections of 50 mg/kg of Vitamin E i.m. After 4 weeks, aortas were removed and analysed by light microscopy for atherosclerotic lesions. Aortic samples were analysed for CD36 mRNA expression. The aortas of cholesterol-fed rabbits showed typical atherosclerotic lesions, detected by macroscopic and microscopic examination, and exhibited an increase in CD36 mRNA expression. Vitamin E fully prevented cholesterol induced atherosclerotic lesions and the induction of CD36 mRNA expression. The effects observed at the level of CD36 scavenger receptor expression in vivo suggest an involvement of reduced foam cell formation in the protective effect of Vitamin E against atherosclerosis.
Resumo:
Surfactants find large applications in detergents, paints, coatings, food and pharmaceutical industries. Other than that, much focused work has been carried out in oil recovery in petroleum industries and raw material extraction in mining industries. This is because of their unique structure and ability to simultaneously adhere to materials which are both structurally and physically different. The current thesis focuses on interactions of oil with different commercially available and laboratory synthesized surfactants in terms of characteristics such as foaming, ultrasound exposure and toxicity. Foaming is one important characteristic of surfactants that is widely utilized for oil recovery purposes. Researchers utilize surfactants' special ability to provide foam stability to for more efficient oil herding capability. The foam stability and foam volumes are calculated using static foam height tests. Further dispersion or oil in water emulsion formation is observed using ultrasound sources. As described earlier surfactants are not only used as foams for oil displacement, but they are also used for dispersion purposes where they are key components of dispersant formulations. During such operations, especially in sea conditions where adverse effects on aquatic life are a concern, toxicity of chemicals used becomes an important factor. Our toxicity testing experiments involves different surfactants, solvents and crude oil combinations through exposure to special light luminescent bacteria. The decrease in light intensity of the exposed bacteria is related to toxic effects of the samples.
Resumo:
Scaphoid is one of the 8 carpal bones found adjacent to the thumb supported proximally by Radius bone. During the free fall, on outstretched hand, the impact load gets transferred to the scaphoid at its free anterior end. Unique arrangement of other carpal bones in the palm is also one of the reasons for the load to get transferred to scaphoid. About half of the total load acting upon carpal bone gets transferred to scaphoid at its distal pole. There are about 10 to 12 clinically observed fracture pattern in the scaphoid due to free fall. The aim of the study is to determine the orientation of the load, magnitude of the load and the corresponding fracture pattern. This study includes both static and dynamic finite element models validated by experiments. The scaphoid model has been prepared from CT scans of a 27 year old person. The 2D slices of the CT scans have been converted to 3D model by using MIMICS software. There are four cases of loading studied which are considered to occur clinically more frequently. In case (i) the load is applied at the posterior end at distal pole whereas in case (ii), (iii) and (iv), the load is applied at anterior end at different directions. The model is given a fixed boundary condition at the region which is supported by Radius bone during the impact. Same loading and boundary conditions have been used in both static and dynamic explicit finite element analysis. The site of fracture initiation and path of fracture propagation have been identified by using max principal stress / gradient and max principal strain / gradient criterion respectively in static and dynamic explicit finite element analysis. Static and dynamic impact experiments were performed on the polyurethane foam specimens to validate the finite element results. Experimental results such as load at fracture, site of fracture initiation and path of fracture propagation have been compared with the results of finite element analysis. Four different types of fracture patterns observed in clinical studies have been identified in this study.