982 resultados para Melting


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work demonstrates the synthesis of Cu-10 wt% TiB2 composites with a theoretical density of more than 90% by tailoring the spark plasma sintering (SPS) conditions in the temperature range of 400-700 degrees C. Interestingly, 10 wt% Pb addition to Cu-10 wt% TiB2 lowers the sinter density and the difference in the densification behavior of the investigated compositions was discussed in reference to the current profile recorded during a SPS cycle. The sintering kinetics and phase assemblage were also discussed in reference to surface melting of the constituents prior to bulk melting temperature, temperature dependent wettability of Pb on Cu, diffusion kinetics of Cu as well as the formation of various oxides. An important result is that a high hardness of around 2 GPa and relative density close to 92% qtheoretical was achieved for the Cu-10 wt% TiB2-10 wt% Pb composite, and such a combination has never been achieved before using any conventional processing route.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanoindentation studies on alpha,omega-alkanedicarboxylic acids reveal that the elastic modulus, E, shows an odd-even alternation in exactly the same manner as the melting temperature, T-m. The results are consistent with the hypothesis that the strained molecular conformations in the odd diacids are the reasons for these alternations in T-m. The same packing features that lower T-m in the odd acids lead to easy accommodation of the deformation during nanoindentation and hence their low E.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Crystallization-induced phase separation and segmental relaxations in poly(vinylidene fluoride)/poly(methyl methacrylate) (PVDF/PMMA) blends was systematically investigated by melt-rheology and broadband dielectric spectroscopy in the presence of multiwall carbon nanotubes (MWNTs). Different functionalized MWNTs (amine, -NH2; acid, -COOH) were incorporated in the blends by melt-mixing above the melting temperature of PVDF, where the blends are miscible, and the crystallization induced phase separation was probed in situ by shear rheology. Interestingly, only -NH2 functionalized MWNTs (a-MWNTs) aided in the formation of beta-phase (trans-trans) crystals in PVDF, whereas both the neat blends and the blends with -COOH functionalized MWNTs (c-MWNTs) showed only alpha-phase (trans-gauche-trans-gauche') crystals as inferred from wide-angle X-ray diffraction (WXRD) and Fourier transform infrared (FTIR). Furthermore, blends with only a-MWNTs facilitated in heterogeneous nucleation in the blends manifesting in an increase in the calorimetric crystallization temperature and hence, augmented the theologically determined crystallintion induced phase separation temperature. The dielectric relaxations associated with the crystalline phase of PVDF (alpha(c)) was completely absent in the blends with a-MWNTs in contrast to neat blends and the blends with c-MWNTs in the dielectric loss spectra. The relaxations in the blends investigated here appeared to follow Havriliak-Negami (HN) empirical equations, and, more interestingly, the dynamic heterogeneity in the system could be mapped by an extra relaxation at higher frequency at the crystallization-induced phase separation temperature. The mean relaxation time (tau(HN)) was evaluated and observed to be delayed in the presence of MWNTs in the blends, more prominently in the case of blends with a-MWNTs. The latter also showed a significant increase in the dielectric relaxation strength (Delta epsilon). Electron microscopy and selective etching was used to confirm the localization of MWNTs in the amorphous phases of the interspherulitic regions as observed from scanning electron microscopy (SEM). The evolved crystalline morphology, during crystallization-induced phase separation, was observed to have a strong influence on the charge transport processes in the blends. These observations were further supported by the specific interactions (like dipole induced dipole interaction) between a-MWNTs and PVDF, as inferred from FTIR, and the differences in the crystalline morphology as observed from WXRD and polarized optical microscopy (POM).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study melting of a face-centered crystalline solid consisting of polydisperse Lennard-Jones spheres with Gaussian polydispersity in size. The phase diagram reproduces the existence of a nearly temperature invariant terminal polydispersity (delta(t) similar or equal to 0.11), with no signature of reentrant melting. The absence of reentrant melting can be attributed to the influence of the attractive part of the potential upon melting. We find that at terminal polydispersity the fractional density change approaches zero, which seems to arise from vanishingly small compressibility of the disordered phase. At constant temperature and volume fraction the system undergoes a sharp transition from crystalline solid to the disordered amorphous or fluid state with increasing polydispersity. This has been quantified by second- and third-order rotational invariant bond orientational order, as well as by the average inherent structure energy. The translational order parameter also indicates a similar sharp structural change at delta similar or equal to 0.09 in case of T* = 1.0, phi = 0.58. The free energy calculation further supports the sharp nature of the transition. The third-order rotationally invariant bond order shows that with increasing polydispersity, the local cluster favors a more icosahedral arrangement and the system loses its local crystalline symmetry. Interestingly, the value of structure factor S(k) of the amorphous phase at delta similar or equal to 0.10 (just beyond the solid-liquid transition density at T* = 1) becomes 2.75, which is below the value of 2.85 required for freezing given by the empirical Hansen-Verlet rule of crystallization, well known in the theory of freezing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nondegenerate pump probe differential transmission experiments on gold nanorods with varying longitudinal surface plasmon resonance have revealed a new phenomenon where the polarity of the transient transmission signal can be reversibly switched between photo bleaching and photo-induced absorption by controlling probe fluence. Under the usual case where probe fluences are nominal, photo bleaching effect is observed for the nanorods with longitudinal surface plasmon resonance energy smaller than the probe photon energy. The laser-induced melting of the nanorods or change in their shape is ruled out for the observed optical switching effect. A quantitative understanding of the results is attempted by invoking a cascaded two-photon absorption dominant beyond a threshold probe fluence of similar to 75 mu J/cm(2).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports on the mass transport behavior of infinitely extended, continuous, and very thin metallic films under the influence of electric current. Application of direct current of high densities (> 10(8) A/m(2)) results in visible melting of thin film at only one of the electrodes, and the melt then flows towards the other electrode in a circularly symmetric fashion forming a microscale ring pattern. For the two tested thin film systems, namely Cr and Al, of thicknesses ranging from 4 to 20 nm, the above directional flow consistently occurred from cathode to anode and anode to cathode, respectively. Furthermore, application of alternating electric current results in flow of the liquid material from both the electrodes. The dependence of critical flow behavior parameters, such as flow direction, flow velocity, and evolution of the ring diameter, are experimentally determined. Analytical models based on the principles of electromigration in liquid-phase materials are developed to explain the experimental observations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three refractory coarse grained CAIs from the Efremovka CV3 chondrite, one (E65) previously shown to have formed with live Ca-41, were studied by ion microprobe for their Al-26-Mg-26 and Be-10-B-10 systematic in order to better understand the origin of Be-10. The high precision Al-Mg data and the inferred Al-26/Al-27 values attest that the precursors of the three CAIs evolved in the solar nebula over a period of few hundred thousand years before last melting-crystallization events. The initial Be-10/Be-9 ratios and delta B-10 values defined by the Be-10 isochrons for the three Efremovka CAIs are similar within errors. The CAI Be-10 abundance in published data underscores the large range for initial Be-10/Be-9 ratios. This is contrary to the relatively small range of Al-26/Al-27 variations in CAIs around the canonical ratio. Two models that could explain the origin of this large Be-10/Be-9 range are assessed from the collateral variations predicted for the initial delta B-10 values: (i) closed system decay of Be-10 from a ``canonical'' Be-10/Be-9 ratio and (ii) formation of CAIs from a mixture of solid precursors and nebula gas irradiated during up to a few hundred thousand years. The second scenario is shown to be the most consistent with the data. This shows that the major fraction of Be-10 in CAIs was produced by irradiation of refractory grains, while contributions of galactic cosmic rays trapping and early solar wind irradiation are less dominant. The case for Be-10 production by solar cosmic rays irradiation of solid refractory precursors poses a conundrum for Ca-41 because the latter is easily produced by irradiation and should be more abundant than what is observed in CAIs. Be-10 production by irradiation from solar energetic particles requires high Ca-41 abundance in early solar system, however, this is not observed in CAIs. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Skutterudites Fe(0.)2Co(3.8)Sb(12),Te-x (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6) were synthesized by induction melting at 1273 K, followed by annealing at 923 K for 144 h. X-ray powder diffraction and electron microprobe analysis confirmed the presence of the skutterudite phase as the main phase. The temperature-dependent transport properties were measured for all the samples from 300 to 818 K. A positive Seebeck coefficient (holes are majority carriers) was obtained in Fe0.2Co3.8Sb 12 in the whole temperature range. Thermally excited carriers changed from n-type to p-type in Fe(0.)2Co(3.8)Sb(12),Te-x 19Te0.1 at 570 K, while in all the other samples, Fe(0.)2Co(3.8)Sb(12),Te-x (x = 0.2, 0.3, 0.4, 0.5, 0.6) exhibited negative Seebeck coefficients in the entire temperature range measured. Whereas for the alloys up to x = 0.2 (Fe(0.)2Co(3.8)Sb(12),Te-x ) the electrical resistivity decreased by charge compensation, it increased for x> 0.2 with an increase in Te content as a result of an increase in the electron concentration. The thermal conductivity decreased with Te substitution owing to carrier phonon scattering and point defect scattering. The maximum dimensionless thermoelectric figure of merit, ZT = 1.04 at 818 K, was obtained with an optimized Te content for Fe0.2Co3.8Sb1 1.5Te0.5 and a carrier concentration of,,J1/ =- 3.0 x 1020 CM-3 at room temperature. Thermal expansion (a = 8.8 x 10-6 K-1), as measured for Fe(0.)2Co(3.8)Sb(12),Te-x , compared well with that of undoped Co4Sb12. A further increase in the thermoelectric figure of merit up to ZT = 1.3 at 820 K was achieved for Fe(0.)2Co(3.8)Sb(12),Te-x , applying severe plastic deformation in terms of a high-pressure torsion process. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sildenafil is a drug used to treat erectile dysfunction and pulmonary arterial hypertension. Because of poor aqueous solubility of the drug, the citrate salt, with improved solubility and pharmacokinetics, has been marketed. However, the citrate salt requires an hour to reach its peak plasma concentration. Thus, to improve solubility and bioavailability characteristics, cocrystals and salts of the drug have been prepared by treating aliphatic dicarboxylic acids with sildenafil; the N-methylated piperazine of the drug molecule interacts with the carboxyl group of the acid to form a heterosynthon. Salts are formed with oxalic and fumaric acid; salt monoanions are formed with succinic and glutaric acid. Sildenafil forms cocrystals with longer chain dicarboxylic acids such as adipic, pimelic, suberic, and sebacic acids. Auxiliary stabilization via C-H center dot center dot center dot O interactions is also present in these cocrystals and salts. Solubility experiments of sildenafil cocrystal/salts were carried out in 0.1N HCl aqueous medium and compared with the solubility of the citrate salt. The glutarate salt and pimelic acid cocrystal dissolve faster than the citrate salt in a two hour dissolution experiment. The glutarate salt exhibits improved solubility (3.2-fold) compared to the citrate salt in water. Solubilities of the binary salts follow an inverse correlation with their melting points, while the solubilities of the cocrystals follow solubilities of the coformer. Pharmacokinetic studies on rats showed that the glutarate salt exhibits doubled plasma AUC values in a single dose within an hour compared to the citrate salt. The high solubility of glutaric acid, in part originating from the strained conformation of the molecule and its high permeability, may be the reason for higher plasma levels of the drug.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We carry out a series of long atomistic molecular dynamics simulations to study the unfolding of a small protein, chicken villin headpiece (HP-36), in water-ethanol (EtOH) binary mixture. The prime objective of this work is to explore the sensitivity of protein unfolding dynamics toward increasing concentration of the cosolvent and unravel essential features of intermediates formed in search of a dynamical pathway toward unfolding. In water ethanol binary mixtures, HP-36 is found to unfold partially, under ambient conditions, that otherwise requires temperature as high as similar to 600 K to denature in pure aqueous solvent. However, an interesting course of pathway is observed to be followed in the process, guided by the formation of unique intermediates. The first step of unfolding is essentially the separation of the cluster formed by three hydrophobic (phenylalanine) residues, namely, Phe-7, Phe-11, and Phe-18, which constitute the hydrophobic core, thereby initiating melting of helix-2 of the protein. The initial steps are similar to temperature-induced unfolding as well as chemical unfolding using DMSO as cosolvent. Subsequent unfolding steps follow a unique path. As water-ethanol shows composition-dependent anomalies, so do the details of unfolding dynamics. With an increase in cosolvent concentration, different partially unfolded intermediates are found to be formed. This is reflected in a remarkable nonmonotonic composition dependence of several order parameters, including fraction of native contacts and protein-solvent interaction energy. The emergence of such partially unfolded states can be attributed to the preferential solvation of the hydrophobic residues by the ethyl groups of ethanol. We further quantify the local dynamics of unfolding by using a Marcus-type theory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dispersion state of multiwall carbon nanotubes (MWNTs) in melt mixed polyethylene/polyethylene oxide (PE/PEO) blends has been assessed by both surface and volume electrical conductivity measurements and the structural relaxations have been assessed by broadband dielectric spectroscopy. The selective localization of MWNTs in the blends was controlled by the flow characteristics of the components, which led to their localization in the energetically less favored phase (PE). The electrical conductivity and positive temperature co-efficient (PTC) measurements were carried out on hot pressed samples. The neat blends exhibited only a negative temperature coefficient (NTC) effect while the blends with MWNTs exhibited both a PTC and a NTC at the melting temperatures of PE and PEO respectively. These phenomenal changes were corroborated with the different crystalline morphology in the blends. It was deduced that during compression molding, the more viscous PEO phase spreads less in contrast to the less viscous PE phase. This has further resulted in a gradient in morphology as well as the distribution state of the MWNTs in the samples and was supported by scanning electron and scanning acoustic microscopy (SAM) studies and contact angle measurements. SAM from different depths of the samples revealed a gradient in the microstructure in the PE/PEO blends which is contingent upon the flow characteristics of the components. Interestingly, the surface and volume electrical conductivity was different due to the different dispersion state of the MWNTs at the surface and bulk. The observed surface and volume electrical conductivity measurements were corroborated with the evolved morphology during processing. The structural relaxations in both PE and PEO were discerned from broadband dielectric spectroscopy. The segmental dynamics below and above the melting temperature of PEO were significantly different in the presence of MWNTs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lithium stearate soap and layered MoS2 nanoparticles encapsulated in lithium stearate soap are prepared in the laboratory, and their lubricating properties are compared with respect to the particle and particle concentration. The tribotracks after friction test was investigated with Raman Spectroscopy, scanning electron microscopy (SEM) and 3D optical profilometry to understand the action mechanism. The status of the soap particles on a tribotrack changes with time, contact pressure and sliding speed. At low pressure and speed, individual solid undeformed soap particle stand proud of the surface and the topography shows marginal difference with sliding time. In these conditions, no frictional difference between the performance of grease with and without the nanoparticles is observed. Increasing the contact pressure and temperature (low speed and high speed) has a dramatic effect as the soap particles melt and the liquid soap flows over the track releasing the hitherto encapsulated nanoparticles. Consequently, the soap smears the track like a liquid, and the nanoparticles now come directly into the interface and are sheared to generate a low-friction tribofilm. At high particle concentration, the sliding time required for melting of the soap and release of MoS2 is reduced, and the tribofilm is more substantial and uniform consisting of smeared MoS2 and carboxylate soap as observed by SEM and 3D optical profilometry. A change in the Raman Spectra is observed with particle concentration, and this is related to morphology and microstructure of the tribofilm generated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nearly monodisperse spherical magnetite (Fe3O4) nanoparticles are prepared by colloidal chemistry route. Magnetic and electronic transport properties of the annealed pellets of these nanoparticles are reported. Effect of external magnetic and electric fields on the magnetic and transport properties of the material are studied as a function of temperature. We find that the highest resistance state of the ferromagnetic system occurs at a magnetic field which is approximately equal to its magnetic coercivity; this establishes the magnetoresistance (MR) in this system to be of the conventional tunnelling type MR as against the spin-valve type MR found more recently in some ferromagnetic oxide systems. The material also shows electroresistance (ER) property with its low-temperature resistance being strongly dependent on the excitation current that is used for the measurement. This ER effect is concluded to be intrinsic to the material and is attributed to the electric field-induced melting of the charge-order state in magnetite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dendrimers as vectors for gene delivery were established, primarily by utilizing few prominent dendrimer types so far. We report herein studies of DNA complexation efficacies and gene delivery vector properties of a nitrogen-core poly(propyl ether imine) (PETIM) dendrimer, constituted with 22 tertiary amine internal branches and 24 primary amines at the periphery. The interaction of the dendrimer with pEGFPDNA was evaluated through UV-vis, circular dichroism (CD) spectral studies, ethidium bromide fluorescence emission quenching, thermal melting, and gel retardation assays, from which most changes to DNA structure during complexation was found to occur at a weight ratio of dendrimer:DNA similar to 2:1. The zeta potential measurements further confirmed this stoichiometry at electroneutrality. The structure of a DNA oligomer upon dendrimer complexation was simulated through molecular modeling and the simulation showed that the dendrimer enfolded DNA oligomer along both major and minor grooves, without causing DNA deformation, in 1:1 and 2:1 dendrimer-to-DNA complexes. Atomic force microscopy (AFM) studies on dendrimer-pEGFP DNA complex showed an increase in the average z-height as a result of dendrimers decorating the DNA, without causing a distortion of the DNA structure. Cytotoxicity studies involving five different mammalian cell lines, using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide] (MTT) assay, reveal the dendrimer toxicity profile (IC50) values of similar to 400-1000 mu g mL(-1), depending on the cell line tested. Quantitative estimation, using luciferase assay, showed that the gene transfection was at least 100 times higher when compared to poly(ethylene imine) branched polymer, having similar number of cationic sites as the dendrimer. The present study establishes the physicochemical behavior of new nitrogen-core PETIM dendrimer-DNA complexes, their lower toxicities, and efficient gene delivery vector properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrochlorothiazide (HCT), C7H8ClN3O4S2, is a diuretic BCS (Biopharmaceutics Classification System) class IV drug which has primary and secondary sulfonamide groups. To modify the aqueous solubility of the drug, co-crystals with biologically safe co-formers were screened. Multi-component molecular crystals of HCT were prepared with nicotinic acid, nicotinamide, succinamide, p-aminobenzoic acid, resorcinol and pyrogallol using liquid-assisted grinding. The co-crystals were characterized by FT-IR spectroscopy, powder X-ray diffraction (PXRD) and differential scanning calorimetry. Single crystal structures were obtained for four of them. The N-H center dot center dot center dot O sulfonamide catemer synthons found in the stable polymorph of pure HCT are replaced in the co-crystals by drug-co-former heterosynthons. Isostructural co-crystals with nicotinic acid and nicotinamide are devoid of the common sulfonamide dimer/catemer synthons. Solubility and stability experiments were carried out for the co-crystals in water (neutral pH) under ambient conditions. Among the six binary systems, the co-crystal with p-aminobenzoic acid showed a sixfold increase in solubility compared with pure HCT, and stability up to 24 h in an aqueous medium. The co-crystals with nicotinamide, resorcinol and pyrogallol showed only a 1.5-2-fold increase in solubility and transformed to HCT within 1 h of the dissolution experiment. An inverse correlation is observed between the melting points of the co-crystals and their solubilities.