993 resultados para Matrix-elements
Resumo:
Background: Matrix metalloproteinases (MMPs) are a family of enzymes important for the resorption of extracellular matrices, control of vascular remodeling and repair. Increased activity of MMP2 has been demonstrated in heart failure, and in acutely decompensated heart failure (ADHF) a decrease in circulating MMPs has been demonstrated along with successful treatment. Objective: Our aim was to test the influence of spironolactone in MMP2 levels. Methods: Secondary analysis of a prospective, interventional study including 100 patients with ADHF. Fifty patients were non-randomly assigned to spironolactone (100 mg/day) plus standard ADHF therapy (spironolactone group) or standard ADHF therapy alone (control group). Results: Spironolactone group patients were younger and had lower creatinine and urea levels (all p < 0.05). Baseline MMP2, NT-pro BNP and weight did not differ between spironolactone and control groups. A trend towards a more pronounced decrease in MMP2 from baseline to day 3 was observed in the spironolactone group (-21 [-50 to 19] vs 1.5 [-26 to 38] ng/mL, p = 0.06). NT-pro BNP and weight also had a greater decrease in the spironolactone group. The proportion of patients with a decrease in MMP2 levels from baseline to day 3 was also likely to be greater in the spironolactone group (50% vs 66.7%), but without statistical significance. Correlations between MMP2, NT-pro BNP and weight variation were not statistically significant. Conclusion: MMP2 levels are increased in ADHF. Patients treated with spironolactone may have a greater reduction in MMP2 levels.
Resumo:
Pt. 1
Resumo:
Magdeburg, Univ., Fak. für Maschinenbau, Diss., 2014
Resumo:
We describe a method for determining the minimal length of elements in the generalized Thompson's groups F(p). We compute the length of an element by constructing a tree pair diagram for the element, classifying the nodes of the tree and summing associated weights from the pairs of node classifications. We use this method to effectively find minimal length representatives of an element.
Resumo:
In an attempt to define the mouse-model for chronic Chagas' disease, a serological, histopathological and ultrastructural study as well as immunotyping of myocardium collagenic matrix were performed on Swiss mice, chronically infected with Trypanosoma cruzi strains: 21 SF and mambaí (Type II); PMN and Bolivia (Type III), spontaneously surviving after 154 to 468 days of infection. Haemagglutination and indirect immunofluorescence tests showed high titres of specific antibodies. The ultrastructural study disclosed the cellular constitution of the inflammatory infiltrate showing the predominance of monocytes, macrophages with intense phagocytic activity, fibroblasts, myofibroblasts and abundant collagen matrix suggesting the association of the inflammatory process with fibrogenesis in chronic chagasic cardiomyopathy. Artertolar and blood capillary alterations together with dissociation of cardiac cells from the capillary wall by edema and inflammation were related to ultrastructural lesions of myocardial cells. Rupture of parasitized cardiac myocells contribute to intensify the inflammatory process in focal areas. Collagen immunotyping showed the predominance of Types III and IV collagen. Collagen degradation and phagocytosis were present suggesting a reversibility of the fibrous process. The mouse model seems to be valuable in the study of the pathogenetic mechanisms in Chagas cardiomyopathy, providing that T. cruzi strains of low virulence and high pathogenecity are used.
Resumo:
Unraveling the effect of selection vs. drift on the evolution of quantitative traits is commonly achieved by one of two methods. Either one contrasts population differentiation estimates for genetic markers and quantitative traits (the Q(st)-F(st) contrast) or multivariate methods are used to study the covariance between sets of traits. In particular, many studies have focused on the genetic variance-covariance matrix (the G matrix). However, both drift and selection can cause changes in G. To understand their joint effects, we recently combined the two methods into a single test (accompanying article by Martin et al.), which we apply here to a network of 16 natural populations of the freshwater snail Galba truncatula. Using this new neutrality test, extended to hierarchical population structures, we studied the multivariate equivalent of the Q(st)-F(st) contrast for several life-history traits of G. truncatula. We found strong evidence of selection acting on multivariate phenotypes. Selection was homogeneous among populations within each habitat and heterogeneous between habitats. We found that the G matrices were relatively stable within each habitat, with proportionality between the among-populations (D) and the within-populations (G) covariance matrices. The effect of habitat heterogeneity is to break this proportionality because of selection for habitat-dependent optima. Individual-based simulations mimicking our empirical system confirmed that these patterns are expected under the selective regime inferred. We show that homogenizing selection can mimic some effect of drift on the G matrix (G and D almost proportional), but that incorporating information from molecular markers (multivariate Q(st)-F(st)) allows disentangling the two effects.
Resumo:
The first main result of the paper is a criterion for a partially commutative group G to be a domain. It allows us to reduce the study of algebraic sets over G to the study of irreducible algebraic sets, and reduce the elementary theory of G (of a coordinate group over G) to the elementary theories of the direct factors of G (to the elementary theory of coordinate groups of irreducible algebraic sets). Then we establish normal forms for quantifier-free formulas over a non-abelian directly indecomposable partially commutative group H. Analogously to the case of free groups, we introduce the notion of a generalised equation and prove that the positive theory of H has quantifier elimination and that arbitrary first-order formulas lift from H to H * F, where F is a free group of finite rank. As a consequence, the positive theory of an arbitrary partially commutative group is decidable.
Resumo:
In recent years, one of the most significant progress in the understanding of liver diseases was the demonstration that liver fibrosis is a dynamic process resulting from a balance between synthesis and degradation of several matrix components, collagen in particular. Thus, fibrosis has been found to be a very early event during liver diseases, be it of toxic, viral or parasitic origin, and to be spontaneously reversible, either partially or totally. In liver fibrosis cell matrix interactions are dependent on the existence of the many factors (sometimes acting in combination) which produce the same events at the cellular and molecular levels. These events are: (i) the recruitment of fiber-producing cells, (ii) their proliferation, (iii) the secretion of matrix constituents of the extracellular matrix, and (iv) the remodeling and degradation of the newly formed matrix. All these events represent, at least in principle, a target for a therapeutic intervention aimed at influencing the experimentally induced hepatic fibrosis. In this context, hepatosplenic schistosomiasis is of particular interest, being an immune cell-mediated granulomatous disease and a model of liver fibrosis allowing extensive studies in human and animals as well as providing original in vitro models.
Resumo:
Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has recently been introduced in diagnostic microbiology laboratories for the identification of bacterial and yeast strains isolated from clinical samples. In the present study, we prospectively compared MALDI-TOF MS to the conventional phenotypic method for the identification of routine isolates. Colonies were analyzed by MALDI-TOF MS either by direct deposition on the target plate or after a formic acid-acetonitrile extraction step if no valid result was initially obtained. Among 1,371 isolates identified by conventional methods, 1,278 (93.2%) were putatively identified to the species level by MALDI-TOF MS and 73 (5.3%) were identified to the genus level, but no reliable identification was obtained for 20 (1.5%). Among the 1,278 isolates identified to the species level by MALDI-TOF MS, 63 (4.9%) discordant results were initially identified. Most discordant results (42/63) were due to systematic database-related taxonomical differences, 14 were explained by poor discrimination of the MALDI-TOF MS spectra obtained, and 7 were due to errors in the initial conventional identification. An extraction step was required to obtain a valid MALDI-TOF MS identification for 25.6% of the 1,278 valid isolates. In conclusion, our results show that MALDI-TOF MS is a fast and reliable technique which has the potential to replace conventional phenotypic identification for most bacterial strains routinely isolated in clinical microbiology laboratories.