910 resultados para Matrices discursivas
Resumo:
Se analiza en la ponencia la función educativa y la consideración que adquiere el cuerpo en los espacios institucionales, donde circulan prácticas discursivas y no discursivas del modelo fundacional del Sistema Argentino de Educación Física, a fines del siglo XIX y principios del XX. La mirada de Foucault de las prácticas discursivas permite describir la materialidad en que se inscriben y cómo el sujeto que forma parte del campo discursivo está condicionado desde la exterioridad donde se produce el mismo; así como, visualizar los efectos que se inscriben sobre los cuerpos, focalizando las prácticas no discursivas, en las clases de los patios. Se concibe entonces al cuerpo, como una construcción socio histórica, predeterminada desde sus relaciones con el saber-poder. Indagar los modos de existencia de este discurso en la actualidad, permitirá descomponer prácticas naturalizadas en el campo de la educación física, reflexionando sobre lo instituido desde una revisión crítica
Resumo:
Gamma detectors based on monolithic scintillator blocks coupled to APDs matrices have proved to be a good alternative to pixelated ones for PET scanners. They provide comparable spatial resolution, improve the sensitivity and make easier the mechanical design of the system. In this study we evaluate by means of Geant4-based simulations the possibility of replacing the APDs by SiPMs. Several commercial matrices of light sensors coupled to LYSO:Ce monolithic blocks have been simulated and compared. Regarding the spatial resolution and linearity of the detector, SiPMs with high photo detection efficiency could become an advantageous replacement for the APDs
Resumo:
La tesis MEDIDAS AUTOSEMEJANTES EN EL PLANO, MOMENTOS Y MATRICES DE HESSENBERG se enmarca entre las áreas de la teoría geométrica de la medida, la teoría de polinomios ortogonales y la teoría de operadores. La memoria aborda el estudio de medidas con soporte acotado en el plano complejo vistas con la óptica de las matrices infinitas de momentos y de Hessenberg asociadas a estas medidas que en la teoría de los polinomios ortogonales las representan. En particular se centra en el estudio de las medidas autosemejantes que son las medidas de equilibrio definidas por un sistema de funciones iteradas (SFI). Los conjuntos autosemejantes son conjuntos que tienen la propiedad geométrica de descomponerse en unión de piezas semejantes al conjunto total. Estas piezas pueden solaparse o no, cuando el solapamiento es pequeño la teoría de Hutchinson [Hut81] funciona bien, pero cuando no existen restricciones falla. El problema del solapamiento consiste en controlar la medida de este solapamiento. Un ejemplo de la complejidad de este problema se plantea con las convoluciones infinitas de distribuciones de Bernoulli, que han resultado ser un ejemplo de medidas autosemejantes en el caso real. En 1935 Jessen y A. Wintner [JW35] ya se planteaba este problema, lejos de ser sencillo ha sido estudiado durante más de setenta y cinco años y siguen sin resolverse las principales cuestiones planteadas ya por A. Garsia [Gar62] en 1962. El interés que ha despertado este problema así como la complejidad del mismo está demostrado por las numerosas publicaciones que abordan cuestiones relacionadas con este problema ver por ejemplo [JW35], [Erd39], [PS96], [Ma00], [Ma96], [Sol98], [Mat95], [PS96], [Sim05],[JKS07] [JKS11]. En el primer capítulo comenzamos introduciendo con detalle las medidas autosemejante en el plano complejo y los sistemas de funciones iteradas, así como los conceptos de la teoría de la medida necesarios para describirlos. A continuación se introducen las herramientas necesarias de teoría de polinomios ortogonales, matrices infinitas y operadores que se van a usar. En el segundo y tercer capítulo trasladamos las propiedades geométricas de las medidas autosemejantes a las matrices de momentos y de Hessenberg, respectivamente. A partir de estos resultados se describen algoritmos para calcular estas matrices a partir del SFI correspondiente. Concretamente, se obtienen fórmulas explícitas y algoritmos de aproximación para los momentos y matrices de momentos de medidas fractales, a partir de un teorema del punto fijo para las matrices. Además utilizando técnicas de la teoría de operadores, se han extendido al plano complejo los resultados que G. Mantica [Ma00, Ma96] obtenía en el caso real. Este resultado es la base para definir un algoritmo estable de aproximación de la matriz de Hessenberg asociada a una medida fractal u obtener secciones finitas exactas de matrices Hessenberg asociadas a una suma de medidas. En el último capítulo, se consideran medidas, μ, más generales y se estudia el comportamiento asintótico de los autovalores de una matriz hermitiana de momentos y su impacto en las propiedades de la medida asociada. En el resultado central se demuestra que si los polinomios asociados son densos en L2(μ) entonces necesariamente el autovalor mínimo de las secciones finitas de la matriz de momentos de la medida tiende a cero. ABSTRACT The Thesis work “Self-similar Measures on the Plane, Moments and Hessenberg Matrices” is framed among the geometric measure theory, orthogonal polynomials and operator theory. The work studies measures with compact support on the complex plane from the point of view of the associated infinite moments and Hessenberg matrices representing them in the theory of orthogonal polynomials. More precisely, it concentrates on the study of the self-similar measures that are equilibrium measures in a iterated functions system. Self-similar sets have the geometric property of being decomposable in a union of similar pieces to the complete set. These pieces can overlap. If the overlapping is small, Hutchinson’s theory [Hut81] works well, however, when it has no restrictions, the theory does not hold. The overlapping problem consists in controlling the measure of the overlap. The complexity of this problem is exemplified in the infinite convolutions of Bernoulli’s distributions, that are an example of self-similar measures in the real case. As early as 1935 [JW35], Jessen and Wintner posed this problem, that far from being simple, has been studied during more than 75 years. The main cuestiones posed by Garsia in 1962 [Gar62] remain unsolved. The interest in this problem, together with its complexity, is demonstrated by the number of publications that over the years have dealt with it. See, for example, [JW35], [Erd39], [PS96], [Ma00], [Ma96], [Sol98], [Mat95], [PS96], [Sim05], [JKS07] [JKS11]. In the first chapter, we will start with a detailed introduction to the self-similar measurements in the complex plane and to the iterated functions systems, also including the concepts of measure theory needed to describe them. Next, we introduce the necessary tools from orthogonal polynomials, infinite matrices and operators. In the second and third chapter we will translate the geometric properties of selfsimilar measures to the moments and Hessenberg matrices. From these results, we will describe algorithms to calculate these matrices from the corresponding iterated functions systems. To be precise, we obtain explicit formulas and approximation algorithms for the moments and moment matrices of fractal measures from a new fixed point theorem for matrices. Moreover, using techniques from operator theory, we extend to the complex plane the real case results obtained by Mantica [Ma00, Ma96]. This result is the base to define a stable algorithm that approximates the Hessenberg matrix associated to a fractal measure and obtains exact finite sections of Hessenberg matrices associated to a sum of measurements. In the last chapter, we consider more general measures, μ, and study the asymptotic behaviour of the eigenvalues of a hermitian matrix of moments, together with its impact on the properties of the associated measure. In the main result we demonstrate that, if the associated polynomials are dense in L2(μ), then necessarily follows that the minimum eigenvalue of the finite sections of the moments matrix goes to zero.
Resumo:
En este trabajo se presenta un método para el modelado de cadenas cinemáticas de robots que salva las dificultades asociadas a la elección de los sistemas de coordenadas y obtención de los parámetros de Denavit-Hartenberg. El método propuesto parte del conocimiento de la posición y orientación del extremo del robot en su configuración de reposo, para ir obteniendo en qué se transforman éstas tras los sucesivos movimientos de sus grados de libertad en secuencia descendente, desde el más alejado al más cercano a su base. Los movimientos son calculados en base a las Matrices de Desplazamiento, que permiten conocer en que se transforma un punto cuando éste es desplazado (trasladado o rotado) con respecto a un eje que no pasa por el origen. A diferencia del método de Denavit-Hartenberg, que precisa ubicar para cada eslabón el origen y las direcciones de los vectores directores de los sistemas de referencia asociados, el método basado en las Matrices de Desplazamiento precisa solo identificar el eje de cada articulación, lo que le hace más simple e intuitivo que aquel. La obtención de las Matrices de Desplazamiento y con ellas del Modelo Cinemático Directo a partir de los ejes de la articulación, puede hacerse mediante algunas simples operaciones, fácilmente programables.
Resumo:
The reinforcing effect of inorganic fullerene-like tungsten disulfide (IF-WS2) nanoparticles in two different polymer matrices, isotactic polypropylene (iPP) and polyphenylene sulfide (PPS), has been investigated by means of dynamic depth-sensing indentation. The hardness and elastic modulus enhancement upon filler addition is analyzed in terms of two main contributions: changes in the polymer matrix nanostructure and intrinsic properties of the filler including matrix-particle load transfer. It is found that the latter mainly determines the overall mechanical improvement, whereas the nanostructural changes induced in the polymer matrix only contribute to a minor extent. Important differences are suggested between the mechanisms of deformation in the two nanocomposites, resulting in a moderate mechanical enhancement in case of iPP (20% for a filler loading of 1%), and a remarkable hardness increase in case of PPS (60% for the same filler content). The nature of the polymer amorphous phase, whether in the glassy or rubbery state, seems to play here an important role. Finally, nanoindentation and dynamic mechanical analysis measurements are compared and discussed in terms of the different directionality of the stresses applied.
Resumo:
Differential resultant formulas are defined, for a system $\cP$ of $n$ ordinary Laurent differential polynomials in $n-1$ differential variables. These are determinants of coefficient matrices of an extended system of polynomials obtained from $\cP$ through derivations and multiplications by Laurent monomials. To start, through derivations, a system $\ps(\cP)$ of $L$ polynomials in $L-1$ algebraic variables is obtained, which is non sparse in the order of derivation. This enables the use of existing formulas for the computation of algebraic resultants, of the multivariate sparse algebraic polynomials in $\ps(\cP)$, to obtain polynomials in the differential elimination ideal generated by $\cP$. The formulas obtained are multiples of the sparse differential resultant defined by Li, Yuan and Gao, and provide order and degree bounds in terms of mixed volumes in the generic case.
Resumo:
The sudden appearance of calcified skeletons among many different invertebrate taxa at the Precambrian-Cambrian transition may have required minor reorganization of preexisting secretory functions. In particular, features of the skeletal organic matrix responsible for regulating crystal growth by inhibition may be derived from mucous epithelial excretions. The latter would have prevented spontaneous calcium carbonate overcrusting of soft tissues exposed to the highly supersaturated Late Proterozoic ocean [Knoll, A. H., Fairchild, I. J. & Swett, K. (1993) Palaios 8, 512-525], a putative function for which we propose the term "anticalcification." We tested this hypothesis by comparing the serological properties of skeletal water-soluble matrices and mucous excretions of three invertebrates--the scleractinian coral Galaxea fascicularis and the bivalve molluscs Mytilus edulis and Mercenaria mercenaria. Crossreactivities recorded between muci and skeletal water-soluble matrices suggest that these different secretory products have a high degree of homology. Furthermore, freshly extracted muci of Mytilus were found to inhibit calcium carbonate precipitation in solution.
Resumo:
Este trabalho discute as transformações no modo de intervenção do Estado na produção do espaço urbano no capitalismo contemporâneo a partir de uma reflexão sobre as políticas de revitalização de centros urbanos e os conflitos de natureza distributiva relacionados a esses projetos. Situando-se no campo do direito econômico, o trabalho explora as relações entre a acumulação capitalista e os padrões de intervenção do Estado sobre o espaço urbano a partir de diferentes níveis de análise, articulando elementos teóricos, jurídico-institucionais e empíricos. O processo de reestruturação do capitalismo que se iniciou nos anos 1970 teve desdobramentos relevantes no campo da regulação urbanística, desencadeando mudanças que atingiram suas funções e formas, e que perpassam diversas escalas geográficas. A ordem social e econômica que se configurou no capitalismo contemporâneo, marcada pela difusão de uma agenda política neoliberal e pela emergência de um regime de acumulação com dominância financeira, tem seus desdobramentos específicos na escala das cidades. Nesse contexto, as políticas urbanas passaram a ser progressivamente norteadas por uma racionalidade pragmática e empresarial, fechando-se à influência de esferas democráticas e desviando-se da institucionalização de compromissos redistributivos. Essa mudança qualitativa é mediada por formas institucionais e arranjos regulatórios que não se limitam à escala urbana e ao direito urbanístico propriamente dito, perpassando normas que regulam o regime jurídico da propriedade imobiliária e suas conexões com a esfera financeira, os padrões de financiamento das políticas urbanas, entre outras. A partir de um estudo sobre o Projeto Porto Maravilha uma intervenção urbanística de grande porte, e amplamente conectada a fluxos econômicos globais, que está sendo implementada na cidade do Rio de Janeiro desde 2009 , desenvolvemos uma reflexão sobre alguns vetores de mudança no papel exercido pelo Estado nos processos de urbanização. Este trabalho apresenta duas hipóteses articuladas. A primeira é a de que os padrões de regulação urbanística que emergiram no capitalismo contemporâneo não são meros reflexos de transformações mais abrangentes, mas sim fatores constitutivos dessas mudanças. A segunda a é de que as políticas de revitalização de centros urbanos agem como vetores de aprofundamento das conexões entre dinâmicas locais e processos globais, e também como incubadoras de novos padrões de regulação urbanística.
Resumo:
The purpose of this research was to apply the use of direct ablation plasma spectroscopic techniques, including spark-induced breakdown spectroscopy (SIBS) and laser-induced breakdown spectroscopy (LIBS), to a variety of environmental matrices. These were applied to two different analytical problems. SIBS instrumentation was adapted in order to develop a fieldable monitor for the measurement of carbon in soil. SIBS spectra in the 200 nm to 400 nm region of several soils were collected, and the neutral carbon line (247.85 nm) was compared to total carbon concentration determined by standard dry combustion analysis. Additionally, Fe and Si were evaluated in a multivariate model in order to determine their impacts on the model's predictive power for total carbon concentrations. The results indicate that SIBS is a viable method to quantify total carbon levels in soils; obtaining a good correlation between measured and predicated carbon in soils. These results indicate that multivariate analysis can be used to construct a calibration model for SIBS soil spectra, and SIBS is a promising method for the determination of total soil carbon. SIBS was also applied to the study of biological warfare agent simulants. Elemental compositions (determined independently) of bioaerosol samples were compared to the SIBS atomic (Ca, Al, Fe and Si) and molecular (CN, N2 and OH) emission signals. Results indicate a linear relationship between the temporally integrated emission strength and the concentration of the associated element. Finally, LIBS signals of hematite were analyzed under low pressures of pure CO2 and compared with signals acquired with a mixture of CO2, N2 and Ar, which is representative of the Martian atmosphere. This research was in response to the potential use of LIBS instrumentation on the Martian surface and to the challenges associated with these measurements. Changes in Ca, Fe and Al lineshapes observed in the LIBS spectra at different gas compositions and pressures were studied. It was observed that the size of the plasma formed on the hematite changed in a non-linear way as a function of decreasing pressure in a CO2 atmosphere and a simulated Martian atmosphere.