940 resultados para Maritime
Resumo:
This paper describes a new approach to detect and track maritime objects in real time. The approach particularly addresses the highly dynamic maritime environment, panning cameras, target scale changes, and operates on both visible and thermal imagery. Object detection is based on agglomerative clustering of temporally stable features. Object extents are first determined based on persistence of detected features and their relative separation and motion attributes. An explicit cluster merging and splitting process handles object creation and separation. Stable object clus- ters are tracked frame-to-frame. The effectiveness of the approach is demonstrated on four challenging real-world public datasets.
Resumo:
State-of-the-art regional climate model simulations that are able to resolve key mesoscale circulations are used, for the first time, to understand the interaction between the large-scale convective environment of the MJO and processes governing the strong diurnal cycle over the islands of the Maritime Continent (MC). Convection is sustained in the late afternoon just inland of the coasts due to sea breeze convergence. Previous work has shown that the variability in MC rainfall associated with the MJO is manifested in changes to this diurnal cycle; land-based rainfall peaks before the active convective envelope of the MJO reaches the MC, whereas oceanic rainfall rates peak whilst the active envelope resides over the region. The model simulations show that the main controls on oceanic MC rainfall in the early active MJO phases are the large-scale environment and atmospheric stability, followed by high oceanic latent heat flux forced by high near-surface winds in the later active MJO phases. Over land, rainfall peaks before the main convective envelope arrives (in agreement with observations), even though the large-scale convective environment is only moderately favourable for convection. The causes of this early rainfall peak are convective triggers from land-sea breeze circulations that are strong due to high surface insolation and surface heating. During the peak MJO phases cloud cover increases and surface insolation decreases, which weakens the strength of the mesoscale circulations and reduces land-based rainfall, even though the large-scale environment remains favourable for convection at this time. Hence, scale interactions are an essential part of the MJO transition across the MC.
Resumo:
The concept of the command of the sea has its roots in medieval notions of the sovereignty of coastal waters, as claimed by several monarchs and polities of Europe. In the sixteenth century, a surge of intellectual creativity, especially in Elizabethan England, fused this notion with the Thucydidean term ‘thalassocracy’ – the rule of the sea. In the light of the explorations of the oceans, this led to a new conceptualisation of naval warfare, developed in theory and then put into practice. This falsifies the mistaken but widespread assumption that there was no significant writing on naval strategy before the nineteenth century.
Resumo:
This paper investigates the Mesolithic-Neolithic transition in the Channel Islands. It presents a new synthesis of all known evidence from the islands c. 5000-4300 BC, including several new excavations as well as find spot sites that have not previously been collated. It also summarises – in English – a large body of contemporary material from north-west France. The paper presents a new high-resolution sea level model for the region, shedding light on the formation of the Channel Islands from 9000-4000 BC. Through comparison with contemporary sites in mainland France, an argument is made suggesting that incoming migrants from the mainland and the small indigenous population of the islands were both involved in the transition. It is also argued that, as a result of the fact the Channel Islands witnessed a very different trajectory of change to that seen in Britain and Ireland c. 5000-3500 BC, this small group of islands has a great deal to tell us about the arrival of the Neolithic more widely.
Resumo:
Incluye Bibliografía
Resumo:
Few studies have examined the effects of temperature on spatial and temporal trends in soil CO2-C emissions in Antarctica. In this work, we present in situ measurements of CO2-C emissions and assess their relation with soil temperature, using dynamic chambers. We found an exponential relation between CO2 emissions and soil temperature, with the value of Q10 being close to 2.1. Mean emission rates were as low as 0.026 and 0.072 g of CO2-C m-2 h-1 for bare soil and soil covered with moss, respectively, and as high as 0.162 g of CO2-C m-2 h-1 for soil covered with grass, Deschampsia antarctica Desv. (Poaceae). A spatial variability analysis conducted using a 60-point grid, for an area with mosses (Sannionia uncianata) and D. antarctica, yielded a spherical semivariogram model for CO2-C emissions with a range of 1 m. The results suggest that soil temperature is a controlling factor on temporal variations in soil CO2-C emissions, although spatial variations appear to be more strongly related to the distribution of vegetation types. © 2010 Elsevier B.V. and NIPR.
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
Incluye Bibliografía
Resumo:
Polar Regions are the most important soil carbon reservoirs on Earth. Monitoring soil carbon storage in a changing global climate context may indicate possible effects of climate change on terrestrial environments. In this regard, we need to understand the dynamics of soil organic matter in relation to its chemical characteristics. We evaluated the influence of chemical characteristics of humic substances on the process of soil organic matter mineralization in selected Maritime Antarctic soils. A laboratory assay was carried out with soils from five locations from King George Island. We determined the contents of total organic carbon, oxidizable carbon fractions of soil organic matter, and humic substances. Two in situ field experiments were carried out during two summers, in order to evaluate the CO2-C emissions in relation to soil temperature variations. The overall low amounts of soil organic matter in Maritime Antarctic soils have a low humification degree and reduced microbial activity. CO2-C emissions showed significant exponential relationship with temperature, suggesting a sharp increase in CO2-C emissions with a warming scenario, and Q10 values (the percentage increase in emission for a 10°C increase in soil temperature) were higher than values reported from elsewhere. The sensitivity of the CO2-C emission in relation to temperature was significantly correlated with the humification degree of soil organic matter and microbial activity for Antarctic soils. © 2012 Antarctic Science Ltd.