957 resultados para Marine-freshwater transition
Resumo:
Amyloodinium ocellatum, a frequently encountered parasite in marine aquaculture, was investigated to determine if infective dinospore stages could be transported in aerosol droplets. We used an in vivo model incorporating static and dynamic airflow systems and found dinospores of A. ocellatum could travel in aerosol droplets (up to 440 turn in a static system and up to 3 m in a dynamic one). This is the first record of this transmission pathway for a marine protozoan parasite. It is possible that other marine protozoans can transfer via the aerobiological pathway. Management of A. ocellatum infections in aquaculture facilities could be affected, particularly where tanks and ponds are situated in close proximity. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
We tested direct and indirect measures of benthic metabolism as indicators of stream ecosystem health across a known agricultural land-use disturbance gradient in southeast Queensland, Australia. Gross primary production (GPP) and respiration (R-24) in benthic chambers in cobble and sediment habitats, algal biomass (as chlorophyll a) from cobbles and sediment cores, algal biomass accrual on artificial substrates and stable carbon isotope ratios of aquatic plants and benthic sediments were measured at 53 stream sites, ranging from undisturbed subtropical rainforest to catchments where improved pasture and intensive cropping are major land-uses. Rates of benthic GPP and R-24 varied by more than two orders of magnitude across the study gradient. Generalised linear regression modelling explained 80% or more of the variation in these two indicators when sediment and cobble substrate dominated sites were considered separately, and both catchment and reach scale descriptors of the disturbance gradient were important in explaining this variation. Model fits were poor for net daily benthic metabolism (NDM) and production to respiration ratio (P/R). Algal biomass accrual on artificial substrate and stable carbon isotope ratios of aquatic plants and benthic sediment were the best of the indirect indicators, with regression model R-2 values of 50% or greater. Model fits were poor for algal biomass on natural substrates for cobble sites and all sites. None of these indirect measures of benthic metabolism was a good surrogate for measured GPP. Direct measures of benthic metabolism, GPP and R-24, and several indirect measures were good indicators of stream ecosystem health and are recommended in assessing process-related responses to riparian and catchment land use change and the success of ecosystem rehabilitation actions.
Resumo:
The effects of dredging on the benthic communities in the Noosa River, a subtropical estuary in SE Queensland, Australia, were examined using a 'Beyond BACF experimental design. Changes in the numbers and types of animals and characteristics of the sediments in response to dredging in the coarse sandy sediments near the mouth of the estuary were compared with those occurring naturally in two control regions. Samples were collected twice before and twice after the dredging operations, at multiple spatial scales, ranging from metres to kilometres. Significant effects from the dredging were detected on the abundance of some polychaetes and bivalves and two measures of diversity (numbers of polychaete families and total taxonomic richness). In addition, the dredging caused a significant increase in the diversity of sediment particle sizes found in the dredged region compared with elsewhere. Community composition in the dredged region was more similar to that in the control regions after dredging than before. Changes in the characteristics of the sedimentary environment as a result of the dredging appeared to lead to the benthic communities of the dredged region becoming more similar to those elsewhere in the estuary, so dredging in this system may have led to the loss or reduction in area of a specific type of habitat in the estuary with implications for overall patterns of biodiversity and ecosystem function. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Photosynthesis of zooxanthellate stony corals may be limited by inorganic carbon at high irradiances. We demonstrated that oxygen consumption of expanded corals is higher than that of contracted corals in both night-expanding and day-expanding corals. It is assumed that at the single-polyp level, the expansion of tentacles increases the surface area for solute exchange with the surrounding water, which may alleviate potential carbon limitation and excess oxygen levels in the tissue under high irradiance. We investigated this hypothesis using stable carbon isotope (613 C) analysis of coral species from the Red Sea exhibiting different morphologies. delta C-13 ratios in zooxanthellae of branched coral colonies with small polyp size that extend their tentacles during daytime (diurnal morphs) showed lower delta C-13 values in their zooxanthellae - 13.83 +/- 1.45 parts per thousand, compared to corals from the same depth with large polyps, which are usually massive and expand their tentacles only at night (nocturnal morphs). Their algae delta C-13 was significantly higher, averaging - 11.33 +/- 0.59 parts per thousand. Carbon isotope budget of the coral tissue suggests that branched corals are more autotrophic, i.e., that they depend on their symbionts for nutrition compared to massive species, which are more heterotrophic and depend on plankton predation. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The aeolid nudibranch Pteraeolidia ianthina hosts symbiotic dinoflagellates in the same way as many reef-building corals. This widespread Indo-Pacific sea slug ranges from tropical to temperate waters, and offers a unique opportunity to examine a symbiosis that occurs over a large latitudinal gradient. We used partial 28S and 18S nuclear ribosomal (nr) DNA to examine the genetic diversity of the Symbiodinium dinoflagellates contained within F ianthina. We detected Symbiodinium from genetic clades A, B, C and D. P. ianthina from tropical regions (Singapore, Sulawesi) host Symbiodinium clade C or D or both; those from the subtropical eastern Australian coast (Heron Island, Mon Repo, Moreton Bay, Tweed Heads) host Symbiodinium clade C, but those from the temperate southeastern Australian coastline (Port Stephens, Bare Island) host clade A or B or both. The Symbiodinium populations within 1 individual nudibranch could be homogeneous or heterogeneous at inter- or intra-clade levels (or both). Our results suggested that the Pteraeolidia-Symbiodinium symbiosis is flexible and favours symbiont phylotypes best adapted for that environment. This flexibility probably reflects the function of the symbiont clade in relation to the changing environments experienced along the latitudinal range, and facilitates the large geographic range of P. ianthina.
Resumo:
The speculation that climate change may impact on sustainable fish production suggests a need to understand how these effects influence fish catch on a broad scale. With a gross annual value of A$ 2.2 billion, the fishing industry is a significant primary industry in Australia. Many commercially important fish species use estuarine habitats such as mangroves, tidal flats and seagrass beds as nurseries or breeding grounds and have lifecycles correlated to rainfall and temperature patterns. Correlation of catches of mullet (e.g. Mugil cephalus) and barramundi (Lates calcarifer) with rainfall suggests that fisheries may be sensitive to effects of climate change. This work reviews key commercial fish and crustacean species and their link to estuaries and climate parameters. A conceptual model demonstrates ecological and biophysical links of estuarine habitats that influences capture fisheries production. The difficulty involved in explaining the effect of climate change on fisheries arising from the lack of ecological knowledge may be overcome by relating climate parameters with long-term fish catch data. Catch per unit effort (CPUE), rainfall, the Southern Oscillation Index (SOI) and catch time series for specific combinations of climate seasons and regions have been explored and surplus production models applied to Queensland's commercial fish catch data with the program CLIMPROD. Results indicate that up to 30% of Queensland's total fish catch and up to 80% of the barramundi catch variation for specific regions can be explained by rainfall often with a lagged response to rainfall events. Our approach allows an evaluation of the economic consequences of climate parameters on estuarine fisheries. thus highlighting the need to develop forecast models and manage estuaries for future climate chan e impact by adjusting the quota for climate change sensitive species. Different modelling approaches are discussed with respect to their forecast ability. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Blooms of Lyngbya majuscula have been increasingly recorded in the waters of Moreton Bay, on the south-east coast of Queensland, Australia. The influences of these blooms on sediment infauna and the implications for sediment biogeochemical processes was studied. Sediment samples were taken from Moreton Bay banks during and after the bloom season. The deposition of L. majuscula seems to be responsible for the higher total Kjedahl nitrogen (TKN) concentrations measured during the bloom period. Total organic carbon (TOC) concentrations did not change. Lyngbya majuscula blooms had a marked influence on the meiobenthos. Nematodes, copepods and polychaetes were the most abundant groups of meiofauna, and the bloom produced a decrease in the abundance and a change in the sediment depth distribution of these organisms. The distribution of nematodes, copepods and polychaetes in sediment became shallower. Further, the bloom did not affect the abundance and distribution of polychaetes as strongly as it did copepods and nematodes. The changes observed in the distribution of meiofauna in the sediment during the bloom period indicate that L. majuscula produces oxygen depletion in sediments, and that different fauna seem to be affected to different degrees.
Resumo:
We assessed the impact of large-scale commercial and recreational harvesting of polychaete worms Marphysa spp. on macrobenthic assemblages in a subtropical estuary in Queensland, Australia, by examining: (1) the spatial extent of harvesting activities and the rate of recovery of the seagrass habitat over an 18 to 20 mo period; (2) the recovery of infauna in and around commercial pits of known age; (3) the indirect effects of physical disturbance from trampling and deposition of sediments during harvesting on epibenthos in areas adjacent to commercial and recreational pits; (4) impacts of potential indirect effects through manipulative experimentation. Harvesting caused a loss of seagrass, changes to the topography and compaction of the sediments associated with the creation of walls around commercial pits, and the deposition of rubble dug from within the pit. The walls and rubble were still evident after 1.8 to 20 mo, but comprised only a small proportion of the total area on the intertidal banks. There was a shift from an intertidal area dominated by Zostera capricorni to one with a mixture of Z. capricorni, Halophila spp. and Halodule uninervis, but there was no overall decline in the biomass of seagrass in these areas. There were distinct impacts from harvesting on the abundance of benthic infauna, especially amphipods, polychaetes and gastropods, and these effects were still detectable after 4 mo of potential recovery. After 12 me, there were no detectable differences in the abundances of these infauna between dug areas and reference areas, which suggested that infauna had recovered from impacts of harvesting; however, an extensive bloom of toxic fireweed Lyngbya majsucula may have masked any remaining impacts. There were no detectable impacts of harvesting on epifauna living in the seagrass immediately around commercial or recreational pits.
Resumo:
Sedimentation and high turbidity have long been considered a major threat to corals, causing world-wide concern for the health of coral reefs in coastal environments. While studies have demonstrated that sediment conditions characteristic of inshore reefs cause stress in corals, the consequences of such conditions for the physiological status of corals require testing in field situations. Here, I compare the size of energy stores (as lipid content), a proxy for physiological condition, of 2 coral species (Turbinaria mesenterina and Acropora valida) between coastal and offshore environments. Corals on coastal reefs contained 4-fold (T mesenterina) and 2-fold (A. valida) more lipid than conspecifics offshore, despite 1 order of magnitude higher turbidity levels inshore. Results were consistent across 4 sites in each environment. Reproductive investment in A. valida (a seasonal mass spawner) did not vary between environments, suggesting that the larger lipid stores in corals on coastal reefs are mainly somatic energy reserves. These results demonstrate that the environmental conditions on inshore, high-turbidity reefs do not always impact negatively on the physiology of corals. The contrasting lipid levels of T. mesenterina between environments may explain its greater success on coastal reefs.
Resumo:
The tropical abalone. Haliotis asinina. is,in ideal species to investigate the molecular mechanisms that control development. growth, reproduction and shell formation in all cultured haliotids. Here we describe the analysis of 232 expressed sequence tags (EST) obtained front a developmental H. asinina cDNA library intended for future microarray studies. From this data set we identified 183 unique gene Clusters. Of these, 90 clusters showed significant homology with sequences lodged in GenBank, ranging in function from general housekeeping to signal transduction, gene regulation and cell-cell communication. Seventy-one clusters possessed completely novel ORFs greater than 50 codons in length, highlighting the paucity of sequence data from molluscs and other lophotrochozoans. This study of developmental gene expression in H. asinina provides the foundation for further detailed analyses of abalone growth, development and reproduction.
Resumo:
Rabbitfish Siganus fuscescens preferences for Lyngbya majuscula collected from three bloom locations in Moreton Bay, Queensland, Australia, were tested along with a range of local plant species in the laboratory. Consumption of L. majuscula by fish did not differ between wild and captive-bred fish (P = 0.152) but did differ between bloom location (P = 0.039). No relationship was found between consumption rates and lyngbyatoxin-a concentration (r(2) = 0.035, P = 0.814). No correlation existed between C : N and proportion of food consumed when all food types were analysed statistically, whereas a clear correlation was observed when L. majuscula was removed from the calculations. In simulated bloom conditions, fish avoided ingestion of L. majuscula by feeding through gaps in the L. majuscula coverage. Both wild and captive-bred S. fuscescens showed a distinct feeding pattern in 10 day no-choice feeding assays, with less L. majuscula being consumed than the preferred red alga Acanthophora spicifera. Lyngbya majuscula however, was consumed in equal quantities to A. spicifera by wild S. fuscescens when lyngbyatoxin-a was not detectable. Wild fish probably do not preferentially feed on L. majuscula when secondary metabolites are present and are not severely impacted by large L. majuscula blooms in Moreton Bay. Furthermore, poor feeding performance in both captive-bred and wild S. fuscescens suggests that they would exert little pressure as a top-down control agent of toxic L. majuscula blooms within Moreton Bay. (c) 2006 The Fisheries Society of the British Isles.
Resumo:
Adaptation to localised thermal regimes is facilitated by restricted gene flow, ultimately leading to genetic divergence among populations and differences in their physiological tolerances. Allozyme analysis of six polymorphic loci was used to assess genetic differentiation between nine populations of the reef-building coral Acropora millepora over a latitudinal temperature gradient on the inshore regions of the Great Barrier Reef (GBR). Small but significant genetic differentiation indicative of moderate levels of gene flow (pairwise F-ST 0.023 to 0.077) was found between southern populations of A. millepora in cooler regions of the GBR and the warmer, central or northern GBR populations. Patterns of genetic differentiation at these putatively neutral allozyme loci broadly matched experimental variation in thermal tolerance and were consistent with local thermal regimes (warmest monthly-averages) for the A. millepora populations examined. It is therefore hypothesized that natural selection has influenced the thermal tolerance of the A. millepora populations examined and greater genetic divergence is likely to be revealed by examination of genetic markers under the direct effects of natural selection.
Resumo:
The failures of traditional target-species management have led many to propose an ecosystem approach to fisheries to promote sustainability. The ecosystem approach is necessary, especially to account for fishery-ecosystem interactions, but by itself is not sufficient to address two important factors contributing to unsustainable fisheries: inappropriate incentives bearing on fishers and the ineffective governance that frequently exists in commercial, developed fisheries managed primarily by total-harvest limits and input controls. We contend that much greater emphasis must be placed on fisher motivation when managing fisheries. Using evidence from more than a dozen natural experiments in commercial fisheries, we argue that incentive-based approaches that better specify community and individual harvest or territorial rights and price ecosystem services and that are coupled with public research, monitoring, and effective oversight promote sustainable fisheries.
Resumo:
Coral bleaching (the loss of symbiotic dinoflagellates from reef-building corals) is most frequently caused by high-light and temperature conditions. We exposed the explants of the hermatypic coral Stylophora pistillata to four combinations of light and temperature in late spring and also in late summer. During mid-summer, two NOAA bleaching warnings were issued for Heron Island reef (Southern Great Barrier Reef, Australia) when sea temperature exceeded the NOAA bleaching threshold, and a 'mild' (in terms of the whole coral community) bleaching event occurred, resulting in widespread S. pistillata bleaching and mortality. Symbiotic dinoflagellate biomass decreased by more than half from late spring to late summer (from 2.5x10(6) to 0.8x10(6) dinoflagellates cm(2) coral tissue), and those dinoflagellates that remained after summer became photoinhibited more readily (dark-adapted F (V) : F (M) decreased to (0.3 compared with 0.4 in spring), and died in greater numbers (up to 17% dinoflagellate mortality compared with 5% in the spring) when exposed to artificially elevated light and temperature. Adding exogenous antioxidants (D-mannitol and L-ascorbic acid) to the water surrounding the coral had no clear effect on either photoinhibition or symbiont mortality. These data show that light and temperature stress cause mortality of the dinoflagellate symbionts within the coral, and that susceptibility to light and temperature stress is strongly related to coral condition. Photoinhibitory mechanisms are clearly involved, and will increase through a positive feedback mechanism: symbiont loss promotes further symbiont loss as the light microenvironment becomes progressively harsher.