996 resultados para Manipulation techniques
Resumo:
Proper release of marine fishes has become increasingly important to anglers. The use of fisheries management tools such as size limits, bag limits and closed seasons as well as stronger conservation ethics have resulted in more and more fish being released. In order to maintain healthy fish populations, each angler is responsible for fishing legally, carefully handling fish that are hooked and releasing fish that are not harvested so they can spawn or perhaps be caught again. (PDF contains 4 pages.)
Resumo:
8 p.
Resumo:
The goal of this study was to test a technology that may help ensure a reliable and consistent supply of high quality and inexpensive clam seed to growers, thus fostering an emerging aquaculture industry by eliminating a seed shortage that limits sustainability. The overall objectives were to develop, test and demonstrate technical procedures and determine the financial feasibility of transferring remote setting technology from the Pacific Northwest molluscan shellfish industry to the hard clam aquaculture industry in Florida. (PDF has 44 pages.)
Resumo:
IN this paper, the engraving process with Q-Switched Nd:YAG laser is investigated. High power density is the pre- requisition to vapor materials, and high repetition rate makes the engraving process highly efficient. An acousto- optic Q-Switch is applied in the cavity of CW 200 W Nd:YAG laser to achieve the high peak power density and the high pulse repetition rate. Different shape craters are formed in a patterned structure on the material surface when the laser beam irradiates on it by controlling power density, pulse repetition rate, pulse quantity and pulse interval. In addition, assisting oxygen gas is used for not only improving combustion to deepen the craters but also removing the plasma that generated on the top of craters. Off-focus length classified as negative and positive has a substantial effect on crater diameters. According to the message of rotating angle positions from material to be engraved and the information of graph pixels from computer, a special graph is imparted to the material by integrating the Q- Switched Nd:YAG laser with the computer graph manipulation and the numerically controlled worktable. The crater diameter depends on laser beam divergence and laser focal length. The crater diameter changes from 50 micrometers to 300 micrometers , and the maximum of crater depth reaches one millimeter.
Resumo:
La tesis se ha centrado en la síntesis y caracterización estructural de materiales tipo perovskita: SrLnMRuO6 (Ln=La,Pr,Nd; M=Zn,Co,Mg,Ni,Fe) y ALn2CuTi2O9 (A=Ca,Ba; Ln=La,Pr,Nd,Sm). El estudio de las estructuras de los materiales se ha realizado mediante el análisis de los patrones de difracción en polvo de rayos-X, sincrotrón y/o neutrones. En el refinamiento por el método de Rietveld de las estructuras se han sustituido las coordenadas atómicas (el método más común), por coordenadas colectivas: las amplitudes de los modos que describen la distorsión de la fase prototipo. Los resultados generales para la serie SrLnMRuO6 (Ln=La,Pr,Nd; M=Zn,Co,Mg,Ni) a temperatura ambiente se ha recogido en un diagrama en el que se han indicado las amplitudes de los modos que transforman de acuerdo a las irreps en función del factor de tolerancia, ya que todos ellos cristalizan en la misma fase monoclínica (P21/n); y a temperaturas altas se ha construido un diagrama de fase. Los materiales SrLnFeRuO6 ( Ln=La,Pr,Nd) y CaLn2CuTi2O9 cristalizan en la fase ortorrómbica Pbnm a temperatura ambiente; mientras que BaLn2CuTi2O9 tienen una estructura más simétrica, I4/mcm. A altas temperaturas se han identificado las transiciones de fase inducidas por el cambio de temperatura.A temperaturas bajas se han analizado las estructuras magnéticas de algunos de los compuestos mediante difracción de neutrones.
Resumo:
Although blogs exist from the beginning of the Internet, their use has considerablybeen increased in the last decade. Nowadays, they are ready for being used bya broad range of people. From teenagers to multinationals, everyone can have aglobal communication space.Companies know blogs are a valuable publicity tool to share information withthe participants, and the importance of creating consumer communities aroundthem: participants come together to exchange ideas, review and recommend newproducts, and even support each other. Also, companies can use blogs for differentpurposes, such as a content management system to manage the content of websites,a bulletin board to support communication and document sharing in teams,an instrument in marketing to communicate with Internet users, or a KnowledgeManagement Tool. However, an increasing number of blog content do not findtheir source in the personal experiences of the writer. Thus, the information cancurrently be kept in the user¿s desktop documents, in the companies¿ catalogues,or in another blogs. Although the gap between blog and data source can be manuallytraversed in a manual coding, this is a cumbersome task that defeats the blog¿seasiness principle. Moreover, depending on the quantity of information and itscharacterisation (i.e., structured content, unstructured content, etc.), an automaticapproach can be more effective.Based on these observations, the aim of this dissertation is to assist blog publicationthrough annotation, model transformation and crossblogging techniques.These techniques have been implemented to give rise to Blogouse, Catablog, andBlogUnion. These tools strive to improve the publication process considering theaforementioned data sources.
Resumo:
The mapping and geospatial analysis of benthic environments are multidisciplinary tasks that have become more accessible in recent years because of advances in technology and cost reductions in survey systems. The complex relationships that exist among physical, biological, and chemical seafloor components require advanced, integrated analysis techniques to enable scientists and others to visualize patterns and, in so doing, allow inferences to be made about benthic processes. Effective mapping, analysis, and visualization of marine habitats are particularly important because the subtidal seafloor environment is not readily viewed directly by eye. Research in benthic environments relies heavily, therefore, on remote sensing techniques to collect effective data. Because many benthic scientists are not mapping professionals, they may not adequately consider the links between data collection, data analysis, and data visualization. Projects often start with clear goals, but may be hampered by the technical details and skills required for maintaining data quality through the entire process from collection through analysis and presentation. The lack of technical understanding of the entire data handling process can represent a significant impediment to success. While many benthic mapping efforts have detailed their methodology as it relates to the overall scientific goals of a project, only a few published papers and reports focus on the analysis and visualization components (Paton et al. 1997, Weihe et al. 1999, Basu and Saxena 1999, Bruce et al. 1997). In particular, the benthic mapping literature often briefly describes data collection and analysis methods, but fails to provide sufficiently detailed explanation of particular analysis techniques or display methodologies so that others can employ them. In general, such techniques are in large part guided by the data acquisition methods, which can include both aerial and water-based remote sensing methods to map the seafloor without physical disturbance, as well as physical sampling methodologies (e.g., grab or core sampling). The terms benthic mapping and benthic habitat mapping are often used synonymously to describe seafloor mapping conducted for the purpose of benthic habitat identification. There is a subtle yet important difference, however, between general benthic mapping and benthic habitat mapping. The distinction is important because it dictates the sequential analysis and visualization techniques that are employed following data collection. In this paper general seafloor mapping for identification of regional geologic features and morphology is defined as benthic mapping. Benthic habitat mapping incorporates the regional scale geologic information but also includes higher resolution surveys and analysis of biological communities to identify the biological habitats. In addition, this paper adopts the definition of habitats established by Kostylev et al. (2001) as a “spatially defined area where the physical, chemical, and biological environment is distinctly different from the surrounding environment.” (PDF contains 31 pages)