936 resultados para Malaria Vectors
Resumo:
Malaria is the most important public health problem in several countries. In Thailand, co-infections of Plasmodium vivax and Plasmodium falciparum are common. We examined the prevalence and patterns of mutations in P. vivax dihydrofolate reductase (Pvdhfr) and P. vivax dihydropteroate synthase (Pvdhps) in 103 blood samples collected from patients with P. vivax infection who had attended the malaria clinic in Mae Sot, Tak Province during 2009 and 2010. Using nested polymerase chain reaction-restriction fragment length polymorfism, we examined single nucleotide polymorphisms-haplotypes at amino acid positions 13, 33, 57, 58, 61, 117 and 173 of Pvdhfr and 383 and 553 of Pvdhps. All parasite isolates carried mutant Pvdhfr alleles, of which the most common alleles were triple mutants (99%). Eight different types of Pvdhfr and combination alleles were found, as follows: 57I/58R/117T, 57I/58R/117T, 57I/58R/117T/N, 57L/58R/117T, 57L/58R/117T, 58R/61M/117N, 58R/61M/117N and 13L/57L/58R/117T. The most common Pvdhfr alleles were 57I/58R/117T (77.7%), 57I/58R/117T/N (1%), 57L/58R/117T (5.8%) and 58R/61M/117N (14.5%). The most common Pvdhfr alleles were 57I/58R/117T (77.7%), 57I/58R/117T/N (1%), 57L/58R/117T (5.8%) and 58R/61M/117N (14.5%). Additionally, we recovered one isolate of a carrying a quadruple mutant allele, 13L/57L/58R/117T. The most prevalent Pvdhps allele was a single mutation in amino acid 383 (82.5%), followed by the wild-type A383/A553 (17.5%) allele. Results suggest that all P. vivax isolates in Thailand carry some combination of mutations in Pvdhfr and Pvdhps. Our findings demonstrate that development of new antifolate drugs effective against sulfadoxine-pyrimethamine-resistant P. vivax is required.
Resumo:
CD8+ T cells against malaria liver stages represent a major protective immune mechanism against infection. Following induction in the peripheral lymph nodes by dendritic cells (DCs), these CD8+ T cells migrate to the liver and eliminate parasite infected hepatocytes. The processing and presentation of sporozoite antigen requires TAP mediated transport of major histocompatibility complex class I epitopes to the endoplasmic reticulum. Importantly, in DCs this process is also dependent on endosome-mediated cross presentation while this mechanism is not required for epitope presentation on hepatocytes. Protective CD8+ T cell responses are strongly dependent on the presence of CD4+ T cells and the capacity of sporozoite antigen to persist for a prolonged period of time. While human trials with subunit vaccines capable of inducing antibodies and CD4+ T cell responses have yielded encouraging results, an effective anti-malaria vaccine will likely require vaccine constructs designed to induce protective CD8+ T cells against malaria liver stages.
Resumo:
Malaria is a vector-borne disease that is considered to be one of the most serious public health problems due to its high global mortality and morbidity rates. Although multiple strategies for controlling malaria have been used, many have had limited impact due to the appearance and rapid dissemination of mosquito resistance to insecticides, parasite resistance to multiple antimalarial drug, and the lack of sustainability. Individuals in endemic areas that have been permanently exposed to the parasite develop specific immune responses capable of diminishing parasite burden and the clinical manifestations of the disease, including blocking of parasite transmission to the mosquito vector. This is referred to as transmission blocking (TB) immunity (TBI) and is mediated by specific antibodies and other factors ingested during the blood meal that inhibit parasite development in the mosquito. These antibodies recognize proteins expressed on either gametocytes or parasite stages that develop in the mosquito midgut and are considered to be potential malaria vaccine candidates. Although these candidates, collectively called TB vaccines (TBV), would not directly stop malaria from infecting individuals, but would stop transmission from infected person to non-infected person. Here, we review the progress that has been achieved in TBI studies and the development of TBV and we highlight their potential usefulness in areas of low endemicity such as Latin America.
Resumo:
Malaria is a mosquito-borne infectious disease caused by Plasmodium parasites transmitted by the infectious bite of Anopheles mosquitoes. Vector control of malaria has predominantly focused on targeting the adult mosquito through insecticides and bed nets. However, current vector control methods are often not sustainable for long periods so alternative methods are needed. A novel biocontrol approach for mosquito-borne diseases has recently been proposed, it uses maternally inherited endosymbiotic Wolbachia bacteria transinfected into mosquitoes in order to interfere with pathogen transmission. Transinfected Wolbachia strains in Aedes aegypti mosquitoes, the primary vector of dengue fever, directly inhibit pathogen replication, including Plasmodium gallinaceum, and also affect mosquito reproduction to allow Wolbachia to spread through mosquito populations. In addition, transient Wolbachia infections in Anopheles gambiae significantly reduce Plasmodium levels. Here we review the prospects of using a Wolbachia-based approach to reduce human malaria transmission through transinfection of Anopheles mosquitoes.
Resumo:
The aim of this work was to identify the natural breeding sites of sandflies in the province of Chaco, Argentina, for the first time. Preliminary studies were conducted in two different phytogeographic regions: dry Chaco (Parque Provincial Pampa del Indio), in January 2010, and humid Chaco (Resistencia, Margarita Belén and Colonia Benítez), from May-September 2010. A total of 127 samples were collected (Pampa del Indio: 15, Resistencia: 37, Margarita Belén: 36, Colonia Benítez: 39). A female of Migonemyia migonei was found in Pampa del Indio at the base of a bromeliad in the summer (January) and a pupal exuvium of a phlebotomine fly was found in Resistencia, in a place where dogs rested, in the winter (July). These findings highlighted these two sites as potential breeding sites. Because the existence of potential natural breeding sites for sandflies has been demonstrated in both forest and periurban areas, expanding the search efforts and characterising these sites will enable the development of specific study designs to gain insight into the spatial distribution of the risks posed by these vectors. The resulting information will serve as a basis for proposing and evaluating vector control measures.
Resumo:
Human immunodeficiency virus (HIV)-1 infection has an important impact on malaria. Plasmodium falciparum and HIV-1 co-infected patients (Pf/HIV) present with a high degree of anaemia, enhanced parasitaemia and decreased CD4+ T cell counts, which increase the risk of developing severe malaria. In addition, infection with either Pf or HIV-1 alone causes extensive immune activation. Our hypothesis was that lymphocyte activation is potentiated in Pf/HIV co-infected patients, consequently worsening their immunosuppressed state. To test this hypothesis, 22 Pf/HIV patients, 34 malaria patients, 29 HIV/AIDS patients and 10 healthy controls without malaria or HIV/acquired immune deficiency syndrome (AIDS) from Maputo/Mozambique were recruited for this study. As expected, anaemia was most prevalent in the Pf/HIV group. A significant variation in parasite density was observed in the Pf/HIV co-infected group (110-75,000 parasites/µL), although the median values were similar to those of the malaria only patients. The CD4+ T cell counts were significantly lower in the Pf/HIV group than in the HIV/AIDS only or malaria only patients. Lymphocyte activation was evaluated by the percentage of activation-associated molecules [CD38 expression on CD8+ and human leukocyte antigen-DR expression on CD3+ T cells]. The highest CD38 expression was detected in the Pf/HIV co-infected patients (median = 78.2%). The malaria only (median = 50%) and HIV/AIDS only (median = 52%) patients also exhibited elevated levels of these molecules, although the values were lower than those of the Pf/HIV co-infected cases. Our findings suggest that enhanced T-cell activation in co-infected patients can worsen the immune response to both diseases.
Resumo:
To explore the effects of deforestation and resulting differences in vegetation and land cover on entomological parameters, such as anopheline species composition, abundance, biting rate, parity and entomological inoculation rate (EIR), three villages were selected in the Lower Caura River Basin, state of Bolívar, Venezuela. All-night mosquito collections were conducted between March 2008-January 2009 using CDC light traps and Mosquito Magnet(r) Liberty Plus. Human landing catches were performed between 06:00 pm-10:00 pm, when anophelines were most active. Four types of vegetation were identified. The Annual Parasite Index was not correlated with the type of vegetation. The least abundantly forested village had the highest anopheline abundance, biting rate and species diversity. Anopheles darlingi and Anopheles nuneztovari were the most abundant species and were collected in all three villages. Both species showed unique biting cycles. The more abundantly forested village of El Palmar reported the highest EIR. The results confirmed previous observations that the impacts of deforestation and resulting changes in vegetation cover on malaria transmission are complex and vary locally.
Resumo:
Certifying the absence of Chagas disease transmission by native vectors lacks scientific grounds and weakens long-term control-surveillance systems to the detriment of people living under risk conditions. Instead, a regular "certification of good practice" (including vector control-surveillance, case detection/patient care and blood safety) could help achieve sustained disease control.
Resumo:
Individual, naturally occurring Phlebotomus mongolensis and Phlebotomus caucasicus from Iran were screened for infections with the maternally inherited intracellular Rickettsia-like bacterium Wolbachia pipientis via targeting a major surface protein gene (wsp). The main objective of this study was to determine if W. pipientis could be detected in these species. The sandflies were screened using polymerase chain reaction to amplify a fragment of the Wolbachia surface protein gene. The obtained sequences were edited and aligned with database sequences to identify W. pipientis haplotypes. Two strains of Wolbachia were found. Strain Turk 54 (accession EU780683) is widespread and has previously been reported in Phlebotomus papatasi and other insects. Strain Turk 07 (accession KC576916) is a novel strain, found for first time in the two sister species. A-group strains of W. pipientis occur throughout much of the habitat of these sandflies. It is possible that Wolbachia is transferred via horizontal transmission. Horizontal transfer could shed light on sandfly control because Wolbachia is believed to drive a deleterious gene into sandflies that reduces their natural population density. With regard to our findings in this study, we can conclude that one species of sandfly can be infected with different Wolbachia strains and that different species of sandflies can be infected with a common strain.
Resumo:
The genetic diversity displayed by Plasmodium falciparum, the most deadly Plasmodium species, is a significant obstacle for effective malaria vaccine development. In this study, we identified genetic polymorphisms in P. falciparum glutamate-rich protein (GLURP), which is currently being tested in clinical trials as a malaria vaccine candidate, from isolates found circulating in the Brazilian Amazon at variable transmission levels. The study was performed using samples collected in 1993 and 2008 from rural villages situated near Porto Velho, in the state of Rondônia. DNA was extracted from 126 P. falciparum-positive thick blood smears using the phenol-chloroform method and subjected to a nested polymerase chain reaction protocol with specific primers against two immunodominant regions of GLURP, R0 and R2. Only one R0 fragment and four variants of the R2 fragment were detected. No differences were observed between the two time points with regard to the frequencies of the fragment variants. Mixed infections were uncommon. Our results demonstrate conservation of GLURP-R0 and limited polymorphic variation of GLURP-R2 in P. falciparum isolates from individuals living in Porto Velho. This is an important finding, as genetic polymorphisms in B and T-cell epitopes could have implications for the immunological properties of the antigen.
Resumo:
Phlebotomine sandflies were captured in rural settlement and periurban areas of the municipality of Guaraí in the state of Tocantins (TO), an endemic area of American cutaneous leishmaniasis (ACL). Forty-three phlebotomine species were identified, nine of which have already been recognised as ACL vectors. Eleven species were recorded for the first time in TO. Nyssomyia whitmani was the most abundant species, followed by Evandromyia bourrouli, Nyssomyia antunesi and Psychodopygus complexus. The Shannon-Wiener diversity index and the evenness index were higher in the rural settlement area than in the periurban area. The evaluation of different ecotopes within the rural area showed the highest frequencies of Ev. bourrouli and Ny. antunesi in chicken coops, whereas Ny. whitmani predominated in this ecotope in the periurban area. In the rural settlement area, Ev. bourrouli was the most frequently captured species in automatic light traps and Ps. complexus was the most prevalent in Shannon trap captures. The rural settlement environment exhibited greater phlebotomine biodiversity than the periurban area. Ps. complexus and Psychodopygus ayrozai naturally infected with Leishmania (Viannia) braziliensis were identified. The data identified Ny. whitmani as a potential ACL vector in the periurban area, whereas Ps. complexus was more prevalent in the rural environment associated with settlements.
Resumo:
During the season of high malaria transmission, most children are infected by Plasmodium, which targets red blood cells (RBCs), affecting haematological parameters. To describe these variations, we examined the haematological profiles of two groups of children living in a malaria-endemic area. A cross-sectional survey was conducted at the peak of the malaria transmission season in a rural area of Burkina Faso. After informed consent and clinical examination, blood samples were obtained from the participants for malaria diagnosis and a full blood count. Of the 414 children included in the analysis, 192 were not infected with Plasmodium, whereas 222 were asymptomatic carriers of Plasmodium infection. The mean age of the infected children was 41.8 months (range of 26.4-57.2) compared to 38.8 months (range of 22.4-55.2) for the control group (p = 0.06). The asymptomatic infected children tended to have a significantly lower mean haemoglobin level (10.8 g/dL vs. 10.4 g/dL; p < 0.001), mean lymphocyte count (4592/µL vs. 5141/µL; p = 0.004), mean platelet count (266 x 103/µL vs. 385 x 103/µL; p < 0.001) and mean RBC count (4.388 x 106/µL vs. 4.158 x 106/µL; p < 0.001) and a higher mean monocyte count (1403/µL vs. 1192/µL; p < 0.001) compared to the control group. Special attention should be applied when interpreting haematological parameters and evaluating immune responses in asymptomatic infected children living in malaria-endemic areas and enrolled in vaccine trials.
Resumo:
Recently, while studying erythrocytic apoptosis during Plasmodium yoelii infection, we observed an increase in the levels of non-parasitised red blood cell (nRBC) apoptosis, which could be related to malarial anaemia. Therefore, in the present study, we attempted to investigate whether nRBC apoptosis is associated with the peripheral RBC count, parasite load or immune response. To this end, BALB/c mice were infected with P. yoelii 17XL and nRBC apoptosis, number of peripheral RBCs, parasitaemia and plasmatic levels of cytokines, nitric oxide and anti-RBC antibodies were evaluated at the early and late stages of anaemia. The apoptosis of nRBCs increased at the late stage and was associated with parasitaemia, but not with the intensity of the immune response. The increased percentage of nRBC apoptosis that was observed when anaemia was accentuated was not related to a reduction in peripheral RBCs. We conclude that nRBC apoptosis in P. yoelii malaria appears to be induced in response to a high parasite load. Further studies on malaria models in which acute anaemia develops during low parasitaemia are needed to identify the potential pathogenic role of nRBC apoptosis.
Resumo:
Although the human-landing catch (HLC) method is the most effective for collecting anthropophilic anophelines, it has been increasingly abandoned, primarily for ethical considerations. The objective of the present study was to develop a new trap for the collection of Anopheles darlingi . The initial trials were conducted using the BG-Sentinel trap as a standard for further trap development based on colour, airflow direction and illumination. The performance of the trap was then compared with those of the CDC, Fay-Prince, counterflow geometry trap (CFG) and HLC. All trials were conducted outdoors between 06:00 pm-08:00 pm. Female specimens of An. darlingi were dissected to determine their parity. A total of 8,334 anophelines were captured, of which 4,945 were identified as An. darlingi . The best trap configuration was an all-white version, with an upward airflow and no required light source. This configuration was subsequently named BG-Malaria (BGM). The BGM captured significantly more anophelines than any of the other traps tested and was similar to HLC with respect to the number and parity of anophelines. The BGM trap can be used as an alternative to HLC for collecting anophelines.
Resumo:
The development and rapid spread of chloroquine resistance (CQR) in Plasmodium falciparum have triggered the identification of several genetic target(s) in the P. falciparum genome. In particular, mutations in the Pfcrt gene, specifically, K76T and mutations in three other amino acids in the region adjoining K76 (residues 72, 74, 75 and 76), are considered to be highly related to CQR. These various mutations form several different haplotypes and Pfcrt gene polymorphisms and the global distribution of the different CQR- Pfcrt haplotypes in endemic and non-endemic regions of P. falciparum malaria have been the subject of extensive study. Despite the fact that the Pfcrt gene is considered to be the primary CQR gene in P. falciparum , several studies have suggested that this may not be the case. Furthermore, there is a poor correlation between the evolutionary implications of the Pfcrt haplotypes and the inferred migration of CQR P. falciparum based on CQR epidemiological surveillance data. The present paper aims to clarify the existing knowledge on the genetic basis of the different CQR- Pfcrt haplotypes that are prevalent in worldwide populations based on the published literature and to analyse the data to generate hypotheses on the genetics and evolution of CQR malaria.