913 resultados para Magnetic-resonance


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accurate and automated methods for measuring the thickness of human cerebral cortex could provide powerful tools for diagnosing and studying a variety of neurodegenerative and psychiatric disorders. Manual methods for estimating cortical thickness from neuroimaging data are labor intensive, requiring several days of effort by a trained anatomist. Furthermore, the highly folded nature of the cortex is problematic for manual techniques, frequently resulting in measurement errors in regions in which the cortical surface is not perpendicular to any of the cardinal axes. As a consequence, it has been impractical to obtain accurate thickness estimates for the entire cortex in individual subjects, or group statistics for patient or control populations. Here, we present an automated method for accurately measuring the thickness of the cerebral cortex across the entire brain and for generating cross-subject statistics in a coordinate system based on cortical anatomy. The intersubject standard deviation of the thickness measures is shown to be less than 0.5 mm, implying the ability to detect focal atrophy in small populations or even individual subjects. The reliability and accuracy of this new method are assessed by within-subject test–retest studies, as well as by comparison of cross-subject regional thickness measures with published values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laser-polarized gases (3He and 129Xe) are currently being used in magnetic resonance imaging as strong signal sources that can be safely introduced into the lung. Recently, researchers have been investigating other tissues using 129Xe. These studies use xenon dissolved in a carrier such as lipid vesicles or blood. Since helium is much less soluble than xenon in these materials, 3He has been used exclusively for imaging air spaces. However, considering that the signal of 3He is more than 10 times greater than that of 129Xe for presently attainable polarization levels, this work has focused on generating a method to introduce 3He into the vascular system. We addressed the low solubility issue by producing suspensions of 3He microbubbles. Here, we provide the first vascular images obtained with laser-polarized 3He. The potential increase in signal and absence of background should allow this technique to produce high-resolution angiographic images. In addition, quantitative measurements of blood flow velocity and tissue perfusion will be feasible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid-state nuclear magnetic resonance relaxation experiments were used to study the rigidity and spatial proximity of polymers in sugar beet (Beta vulgaris) cell walls. Proton T1ρ decay and cross-polarization patterns were consistent with the presence of rigid, crystalline cellulose microfibrils with a diameter of approximately 3 nm, mobile pectic galacturonans, and highly mobile arabinans. A direct-polarization, magic-angle-spinning spectrum recorded under conditions adapted to mobile polymers showed only the arabinans, which had a conformation similar to that of beet arabinans in solution. These cell walls contained very small amounts of hemicellulosic polymers such as xyloglucan, xylan, and mannan, and no arabinan or galacturonan fraction closely associated with cellulose microfibrils, as would be expected of hemicelluloses. Cellulose microfibrils in the beet cell walls were stable in the absence of any polysaccharide coating.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In vivo assessment of gene expression is desirable to obtain information on the extent and duration of transduction of tissue after gene delivery. We have developed an in vivo, potentially noninvasive, method for detecting virally mediated gene transfer to the liver. The method employs an adenoviral vector carrying the gene for the brain isozyme of murine creatine kinase (CK-B), an ATP-buffering enzyme expressed mainly in muscle and brain but absent from liver, kidney, and pancreas. Gene expression was monitored by 31P magnetic resonance spectroscopy (MRS) using the product of the CK enzymatic reaction, phosphocreatine, as an indicator of transfection. The vector was administered into nude mice by tail vein injection, and exogenous creatine was administered in the drinking water and by i.p. injection of 2% creatine solution before 31P MRS examination, which was performed on surgically exposed livers. A phosphocreatine resonance was detected in livers of mice injected with the vector and was absent from livers of control animals. CK expression was confirmed in the injected animals by Western blot analysis, enzymatic assays, and immunofluorescence measurements. We conclude that the syngeneic enzyme CK can be used as a marker gene for in vivo monitoring of gene expression after virally mediated gene transfer to the liver.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In vivo pyruvate synthesis by malic enzyme (ME) and pyruvate kinase and in vivo malate synthesis by phosphoenolpyruvate carboxylase and the Krebs cycle were measured by 13C incorporation from [1-13C]glucose into glucose-6-phosphate, alanine, glutamate, aspartate, and malate. These metabolites were isolated from maize (Zea mays L.) root tips under aerobic and hypoxic conditions. 13C-Nuclear magnetic resonance spectroscopy and gas chromatography-mass spectrometry were used to discern the positional isotopic distribution within each metabolite. This information was applied to a simple precursor-product model that enabled calculation of specific metabolic fluxes. In respiring root tips, ME was found to contribute only approximately 3% of the pyruvate synthesized, whereas pyruvate kinase contributed the balance. The activity of ME increased greater than 6-fold early in hypoxia, and then declined coincident with depletion of cytosolic malate and aspartate. We found that in respiring root tips, anaplerotic phosphoenolpyruvate carboxylase activity was high relative to ME, and therefore did not limit synthesis of pyruvate by ME. The significance of in vivo pyruvate synthesis by ME is discussed with respect to malate and pyruvate utilization by isolated mitochondria and intracellular pH regulation under hypoxia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transport, compartmentation, and metabolism of homoserine was characterized in two strains of meristematic higher plant cells, the dicotyledonous sycamore (Acer pseudoplatanus) and the monocotyledonous weed Echinochloa colonum. Homoserine is an intermediate in the synthesis of the aspartate-derived amino acids methionine, threonine (Thr), and isoleucine. Using 13C-nuclear magnetic resonance, we showed that homoserine actively entered the cells via a high-affinity proton-symport carrier (Km approximately 50–60 μm) at the maximum rate of 8 ± 0.5 μmol h−1 g−1 cell wet weight, and in competition with serine or Thr. We could visualize the compartmentation of homoserine, and observed that it accumulated at a concentration 4 to 5 times higher in the cytoplasm than in the large vacuolar compartment. 31P-nuclear magnetic resonance permitted us to analyze the phosphorylation of homoserine. When sycamore cells were incubated with 100 μm homoserine, phosphohomoserine steadily accumulated in the cytoplasmic compartment over 24 h at the constant rate of 0.7 μmol h−1 g−1 cell wet weight, indicating that homoserine kinase was not inhibited in vivo by its product, phosphohomoserine. The rate of metabolism of phosphohomoserine was much lower (0.06 μmol h−1 g−1 cell wet weight) and essentially sustained Thr accumulation. Similarly, homoserine was actively incorporated by E. colonum cells. However, in contrast to what was seen in sycamore cells, large accumulations of Thr were observed, whereas the intracellular concentration of homoserine remained low, and phosphohomoserine did not accumulate. These differences with sycamore cells were attributed to the presence of a higher Thr synthase activity in this strain of monocot cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Considerable evidence exists to support the hypothesis that the hippocampus and related medial temporal lobe structures are crucial for the encoding and storage of information in long-term memory. Few human imaging studies, however, have successfully shown signal intensity changes in these areas during encoding or retrieval. Using functional magnetic resonance imaging (fMRI), we studied normal human subjects while they performed a novel picture encoding task. High-speed echo-planar imaging techniques evaluated fMRI signal changes throughout the brain. During the encoding of novel pictures, statistically significant increases in fMRI signal were observed bilaterally in the posterior hippocampal formation and parahippocampal gyrus and in the lingual and fusiform gyri. To our knowledge, this experiment is the first fMRI study to show robust signal changes in the human hippocampal region. It also provides evidence that the encoding of novel, complex pictures depends upon an interaction between ventral cortical regions, specialized for object vision, and the hippocampal formation and parahippocampal gyrus, specialized for long-term memory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Successful cryopreservation of most multicompartmental biological systems has not been achieved. One prerequisite for success is quantitative information on cryoprotectant permeation into and amongst the compartments. This report describes direct measurements of cryoprotectant permeation into a multicompartmental system using chemical shift selective magnetic resonance (MR) microscopy and MR spectroscopy. We used the developing zebrafish embryo as a model for studying these complex systems because these embryos are composed of two membrane-limited compartments: (i) a large yolk (surrounded by the yolk syncytial layer) and (ii) differentiating blastoderm cells (each surrounded by a plasma membrane). MR images of the spatial distribution of three cryoprotectants (dimethyl sulfoxide, propylene glycol, and methanol) demonstrated that methanol permeated the entire embryo within 15 min. In contrast, the other cryoprotectants exhibited little or no permeation over 2.5 h. MR spectroscopy and microinjections of cryoprotectants into the yolk inferred that the yolk syncytial layer plays a critical role in limiting the permeation of some cryoprotectants throughout the embryo. This study demonstrates the power of MR technology combined with micromanipulation for elucidating key physiological factors in cryobiology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanism of contrast enhancement of tumors using magnetic resonance imaging was investigated in MCF7 human breast cancer implanted in nude mice. Dynamic contrast-enhanced images recorded at high spatial resolution were analyzed by an image analysis method based on a physiological model, which included the blood circulation, the tumor, the remaining tissues, and clearance via the kidneys. This analysis enabled us to map in rapidly enhancing regions within the tumor, the capillary permeability factor (capillary permeability times surface area per voxel volume) and the fraction of leakage space. Correlation of these maps with T2-weighted spin echo images, with histopathology, and with immunohistochemical staining of endothelial cells demonstrated the presence of dense permeable microcapillaries in the tumor periphery and in intratumoral regions that surrounded necrotic loci. The high leakage from the intratumoral permeable capillaries indicated an induction of a specific angiogenic process associated with stress conditions that cause necrosis. This induction was augmented in tumors responding to tamoxifen treatment. Determination of the distribution and extent of this stress-induced angiogenic activity by contrast-enhanced MRI might be of diagnostic and of prognostic value.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using a 9.4 T MRI instrument, we have obtained images of the mouse brain response to photic stimulation during a period between deep anesthesia and the early stages of arousal. The large image enhancements we observe (often >30%) are consistent with literature results extrapolated to 9.4 T. However, there are also two unusual aspects to our findings. (i) The visual area of the brain responds only to changes in stimulus intensity, suggesting that we directly detect operations of the M visual system pathway. Such a channel has been observed in mice by invasive electrophysiology, and described in detail for primates. (ii) Along with the typical positive response in the area of the occipital portion of the brain containing the visual cortex, another area displays decreased signal intensity upon stimulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Of all humans thus far studied, Sherpas are considered by many high-altitude biomedical scientists as most exquisitely adapted for life under continuous hypobaric hypoxia. However, little is known about how the heart is protected in hypoxia. Hypoxia defense mechanisms in the Sherpa heart were explored by in vivo, noninvasive 31P magnetic resonance spectroscopy. Six Sherpas were examined under two experimental conditions [normoxic (21% FiO2) and hypoxic (11% FiO2) and in two adaptational states--the acclimated state (on arrival at low-altitude study sites) and the deacclimating state (4 weeks of ongoing exposure to low altitude). Four lowland subjects were used for comparison. We found that the concentration ratios of phosphocreatine (PCr)/adenosine triphosphate (ATP) were maintained at steady-state normoxic values (0.96, SEM = 0.22) that were about half those found in normoxic lowlanders (1.76, SEM = 0.03) monitored the same way at the same time. These differences in heart energetic status between Sherpas and lowlanders compared under normoxic conditions remained highly significant (P < 0.02) even after 4 weeks of deacclimation at low altitudes. In Sherpas under acute hypoxia, the heart rate increased by 20 beats per min from resting values of about 70 beats per min, and the percent saturation of hemoglobin decreased to about 75%. However, these perturbations did not alter the PCr/ATP concentration ratios, which remained at about 50% of the values expected in healthy lowlanders. Because the creatine phosphokinase reaction functions close to equilibrium, these steady-state PCr/ATP ratios presumably coincided with about 3-fold higher free adenosine diphosphate (ADP) concentrations. Higher ADP concentrations (i.e., lower [PCr]/[ATP] ratios) were interpreted to correlate with the Km values for ADP-requiring kinases of glycolysis and to reflect elevated carbohydrate contributions to heart energy needs. This metabolic organization is postulated as advantageous in hypobaria because the ATP yield per O2 molecule is 25-60% higher with glucose than with free fatty acids (the usual fuels utilized in the human heart in postfasting conditions).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The previously established cortical representation of rat whiskers in layer IV of the cortex contains distinct cylindrical columns of cellular aggregates, which are termed barrels and correlate in a one-to-one relation to whiskers on the contralateral rat face. In the present study, functional magnetic resonance imaging (fMRI) of the rat brain was used to map whisker barrel activation during mechanical up-down movement (+/- 2.5 mm amplitude at 8 Hz) of single/multiple whisker(s). Multislice gradient echo fMRI experiments were performed at 7 T with in-plane image resolution of 220 x 220 microns, slice thickness of 1 mm, and echo time of 16 ms. Highly significant (P < 0.001) and localized contralateral regions of activation were observed upon stimulation of single/multiple whisker(s). In all experiments (n = 10), the locations of activation relative to bregma and midline were highly correlated with the neuroanatomical position of the corresponding whisker barrels, and the results were reproducible intra- and interanimal. Our results indicate that fMRI based on blood oxygenation level-dependent image contrast has the sensitivity to depict activation of a single whisker barrel in the rat brain. This noninvasive technique will supplement existing methods in the study of rat barrel cortex and should be particularly useful for the long-term investigations of central nervous system in the same animal.