875 resultados para Machine Learning Robotics Artificial Intelligence Bayesian Networks
Resumo:
Esta dissertação incide sobre o estudo e análise de uma solução para a criação de um sistema de recomendação para uma comunidade de consumidores de media e no consequente desenvolvimento da mesma cujo âmbito inicial engloba consumidores de jogos, filmes e/ou séries, com o intuito de lhes proporcionar a oportunidade de partilharem experiências, bem como manterem um registo das mesmas. Com a informação adquirida, o sistema reúne condições para proceder a sugestões direccionadas a cada membro da comunidade. O sistema actualiza a sua informação mediante as acções e os dados fornecidos pelos membros, bem como pelo seu feedback às sugestões. Esta aprendizagem ao longo do tempo permite que as sugestões do sistema evoluam juntamente com a mudança de preferência dos membros ou se autocorrijam. O sistema toma iniciativa de sugerir mediante determinadas acções, mas também pode ser invocada uma sugestão directamente pelo utilizador, na medida em que este não precisa de esperar por sugestões, podendo pedir ao sistema que as forneça num determinado momento. Nos testes realizados foi possível apurar que o sistema de recomendação desenvolvido forneceu sugestões adequadas a cada utilizador específico, tomando em linha de conta as suas acções prévias. Para além deste facto, o sistema não forneceu qualquer sugestão quando o histórico destas tinha provado incomodar o utilizador.
Resumo:
High-content analysis has revolutionized cancer drug discovery by identifying substances that alter the phenotype of a cell, which prevents tumor growth and metastasis. The high-resolution biofluorescence images from assays allow precise quantitative measures enabling the distinction of small molecules of a host cell from a tumor. In this work, we are particularly interested in the application of deep neural networks (DNNs), a cutting-edge machine learning method, to the classification of compounds in chemical mechanisms of action (MOAs). Compound classification has been performed using image-based profiling methods sometimes combined with feature reduction methods such as principal component analysis or factor analysis. In this article, we map the input features of each cell to a particular MOA class without using any treatment-level profiles or feature reduction methods. To the best of our knowledge, this is the first application of DNN in this domain, leveraging single-cell information. Furthermore, we use deep transfer learning (DTL) to alleviate the intensive and computational demanding effort of searching the huge parameter's space of a DNN. Results show that using this approach, we obtain a 30% speedup and a 2% accuracy improvement.
Resumo:
This dissertation presents a solution for environment sensing using sensor fusion techniques and a context/environment classification of the surroundings in a service robot, so it could change his behavior according to the different rea-soning outputs. As an example, if a robot knows he is outdoors, in a field environment, there can be a sandy ground, in which it should slow down. Contrariwise in indoor environments, that situation is statistically unlikely to happen (sandy ground). This simple assumption denotes the importance of context-aware in automated guided vehicles.
Resumo:
This research aims to advance blinking detection in the context of work activity. Rather than patients having to attend a clinic, blinking videos can be acquired in a work environment, and further automatically analyzed. Therefore, this paper presents a methodology to perform the automatic detection of eye blink using consumer videos acquired with low-cost web cameras. This methodology includes the detection of the face and eyes of the recorded person, and then it analyzes the low-level features of the eye region to create a quantitative vector. Finally, this vector is classified into one of the two categories considered —open and closed eyes— by using machine learning algorithms. The effectiveness of the proposed methodology was demonstrated since it provides unbiased results with classification errors under 5%
Resumo:
Text Mining has opened a vast array of possibilities concerning automatic information retrieval from large amounts of text documents. A variety of themes and types of documents can be easily analyzed. More complex features such as those used in Forensic Linguistics can gather deeper understanding from the documents, making possible performing di cult tasks such as author identi cation. In this work we explore the capabilities of simpler Text Mining approaches to author identification of unstructured documents, in particular the ability to distinguish poetic works from two of Fernando Pessoas' heteronyms: Alvaro de Campos and Ricardo Reis. Several processing options were tested and accuracies of 97% were reached, which encourage further developments.
Resumo:
Estudio e implantación de algoritmos de recomendación, búsqueda, ranking y aprendizaje.
Resumo:
Emotions are crucial for user's decision making in recommendation processes. We first introduce ambient recommender systems, which arise from the analysis of new trends on the exploitation of the emotional context in the next generation of recommender systems. We then explain some results of these new trends in real-world applications through the smart prediction assistant (SPA) platform in an intelligent learning guide with more than three million users. While most approaches to recommending have focused on algorithm performance. SPA makes recommendations to users on the basis of emotional information acquired in an incremental way. This article provides a cross-disciplinary perspective to achieve this goal in such recommender systems through a SPA platform. The methodology applied in SPA is the result of a bunch of technology transfer projects for large real-world rccommender systems
Resumo:
In the future, robots will enter our everyday lives to help us with various tasks.For a complete integration and cooperation with humans, these robots needto be able to acquire new skills. Sensor capabilities for navigation in real humanenvironments and intelligent interaction with humans are some of the keychallenges.Learning by demonstration systems focus on the problem of human robotinteraction, and let the human teach the robot by demonstrating the task usinghis own hands. In this thesis, we present a solution to a subproblem within thelearning by demonstration field, namely human-robot grasp mapping. Robotgrasping of objects in a home or office environment is challenging problem.Programming by demonstration systems, can give important skills for aidingthe robot in the grasping task.The thesis presents two techniques for human-robot grasp mapping, directrobot imitation from human demonstrator and intelligent grasp imitation. Inintelligent grasp mapping, the robot takes the size and shape of the object intoconsideration, while for direct mapping, only the pose of the human hand isavailable.These are evaluated in a simulated environment on several robot platforms.The results show that knowing the object shape and size for a grasping taskimproves the robot precision and performance
Resumo:
This paper reports on the purpose, design, methodology and target audience of E-learning courses in forensic interpretation offered by the authors since 2010, including practical experiences made throughout the implementation period of this project. This initiative was motivated by the fact that reporting results of forensic examinations in a logically correct and scientifically rigorous way is a daily challenge for any forensic practitioner. Indeed, interpretation of raw data and communication of findings in both written and oral statements are topics where knowledge and applied skills are needed. Although most forensic scientists hold educational records in traditional sciences, only few actually followed full courses that focussed on interpretation issues. Such courses should include foundational principles and methodology - including elements of forensic statistics - for the evaluation of forensic data in a way that is tailored to meet the needs of the criminal justice system. In order to help bridge this gap, the authors' initiative seeks to offer educational opportunities that allow practitioners to acquire knowledge and competence in the current approaches to the evaluation and interpretation of forensic findings. These cover, among other aspects, probabilistic reasoning (including Bayesian networks and other methods of forensic statistics, tools and software), case pre-assessment, skills in the oral and written communication of uncertainty, and the development of independence and self-confidence to solve practical inference problems. E-learning was chosen as a general format because it helps to form a trans-institutional online-community of practitioners from varying forensic disciplines and workfield experience such as reporting officers, (chief) scientists, forensic coordinators, but also lawyers who all can interact directly from their personal workplaces without consideration of distances, travel expenses or time schedules. In the authors' experience, the proposed learning initiative supports participants in developing their expertise and skills in forensic interpretation, but also offers an opportunity for the associated institutions and the forensic community to reinforce the development of a harmonized view with regard to interpretation across forensic disciplines, laboratories and judicial systems.
Resumo:
We conduct a large-scale comparative study on linearly combining superparent-one-dependence estimators (SPODEs), a popular family of seminaive Bayesian classifiers. Altogether, 16 model selection and weighing schemes, 58 benchmark data sets, and various statistical tests are employed. This paper's main contributions are threefold. First, it formally presents each scheme's definition, rationale, and time complexity and hence can serve as a comprehensive reference for researchers interested in ensemble learning. Second, it offers bias-variance analysis for each scheme's classification error performance. Third, it identifies effective schemes that meet various needs in practice. This leads to accurate and fast classification algorithms which have an immediate and significant impact on real-world applications. Another important feature of our study is using a variety of statistical tests to evaluate multiple learning methods across multiple data sets.
Resumo:
The relationship between inflammation and cancer is well established in several tumor types, including bladder cancer. We performed an association study between 886 inflammatory-gene variants and bladder cancer risk in 1,047 cases and 988 controls from the Spanish Bladder Cancer (SBC)/EPICURO Study. A preliminary exploration with the widely used univariate logistic regression approach did not identify any significant SNP after correcting for multiple testing. We further applied two more comprehensive methods to capture the complexity of bladder cancer genetic susceptibility: Bayesian Threshold LASSO (BTL), a regularized regression method, and AUC-Random Forest, a machine-learning algorithm. Both approaches explore the joint effect of markers. BTL analysis identified a signature of 37 SNPs in 34 genes showing an association with bladder cancer. AUC-RF detected an optimal predictive subset of 56 SNPs. 13 SNPs were identified by both methods in the total population. Using resources from the Texas Bladder Cancer study we were able to replicate 30% of the SNPs assessed. The associations between inflammatory SNPs and bladder cancer were reexamined among non-smokers to eliminate the effect of tobacco, one of the strongest and most prevalent environmental risk factor for this tumor. A 9 SNP-signature was detected by BTL. Here we report, for the first time, a set of SNP in inflammatory genes jointly associated with bladder cancer risk. These results highlight the importance of the complex structure of genetic susceptibility associated with cancer risk.
Resumo:
Spatial data analysis mapping and visualization is of great importance in various fields: environment, pollution, natural hazards and risks, epidemiology, spatial econometrics, etc. A basic task of spatial mapping is to make predictions based on some empirical data (measurements). A number of state-of-the-art methods can be used for the task: deterministic interpolations, methods of geostatistics: the family of kriging estimators (Deutsch and Journel, 1997), machine learning algorithms such as artificial neural networks (ANN) of different architectures, hybrid ANN-geostatistics models (Kanevski and Maignan, 2004; Kanevski et al., 1996), etc. All the methods mentioned above can be used for solving the problem of spatial data mapping. Environmental empirical data are always contaminated/corrupted by noise, and often with noise of unknown nature. That's one of the reasons why deterministic models can be inconsistent, since they treat the measurements as values of some unknown function that should be interpolated. Kriging estimators treat the measurements as the realization of some spatial randomn process. To obtain the estimation with kriging one has to model the spatial structure of the data: spatial correlation function or (semi-)variogram. This task can be complicated if there is not sufficient number of measurements and variogram is sensitive to outliers and extremes. ANN is a powerful tool, but it also suffers from the number of reasons. of a special type ? multiplayer perceptrons ? are often used as a detrending tool in hybrid (ANN+geostatistics) models (Kanevski and Maignank, 2004). Therefore, development and adaptation of the method that would be nonlinear and robust to noise in measurements, would deal with the small empirical datasets and which has solid mathematical background is of great importance. The present paper deals with such model, based on Statistical Learning Theory (SLT) - Support Vector Regression. SLT is a general mathematical framework devoted to the problem of estimation of the dependencies from empirical data (Hastie et al, 2004; Vapnik, 1998). SLT models for classification - Support Vector Machines - have shown good results on different machine learning tasks. The results of SVM classification of spatial data are also promising (Kanevski et al, 2002). The properties of SVM for regression - Support Vector Regression (SVR) are less studied. First results of the application of SVR for spatial mapping of physical quantities were obtained by the authorsin for mapping of medium porosity (Kanevski et al, 1999), and for mapping of radioactively contaminated territories (Kanevski and Canu, 2000). The present paper is devoted to further understanding of the properties of SVR model for spatial data analysis and mapping. Detailed description of the SVR theory can be found in (Cristianini and Shawe-Taylor, 2000; Smola, 1996) and basic equations for the nonlinear modeling are given in section 2. Section 3 discusses the application of SVR for spatial data mapping on the real case study - soil pollution by Cs137 radionuclide. Section 4 discusses the properties of the modelapplied to noised data or data with outliers.
Resumo:
The quality of environmental data analysis and propagation of errors are heavily affected by the representativity of the initial sampling design [CRE 93, DEU 97, KAN 04a, LEN 06, MUL07]. Geostatistical methods such as kriging are related to field samples, whose spatial distribution is crucial for the correct detection of the phenomena. Literature about the design of environmental monitoring networks (MN) is widespread and several interesting books have recently been published [GRU 06, LEN 06, MUL 07] in order to clarify the basic principles of spatial sampling design (monitoring networks optimization) based on Support Vector Machines was proposed. Nonetheless, modelers often receive real data coming from environmental monitoring networks that suffer from problems of non-homogenity (clustering). Clustering can be related to the preferential sampling or to the impossibility of reaching certain regions.