924 resultados para MUTANT ENZYME
Resumo:
Amyloid-β peptide (Aβ) aggregates induce nitro-oxidative stress, contributing to the characteristic neurodegeneration found in Alzheimer's disease (AD). One of the most strongly nitrotyrosinated proteins in AD is the triosephosphate isomerase (TPI) enzyme which regulates glycolytic flow, and its efficiency decreased when it is nitrotyrosinated. The main aims of this study were to analyze the impact of TPI nitrotyrosination on cell viability and to identify the mechanism behind this effect. In human neuroblastoma cells (SH-SY5Y), we evaluated the effects of Aβ42 oligomers on TPI nitrotyrosination. We found an increased production of methylglyoxal (MG), a toxic byproduct of the inefficient nitro-TPI function. The proapoptotic effects of Aβ42 oligomers, such as decreasing the protective Bcl2 and increasing the proapoptotic caspase-3 and Bax, were prevented with a MG chelator. Moreover, we used a double mutant TPI (Y165F and Y209F) to mimic nitrosative modifications due to Aβ action. Neuroblastoma cells transfected with the double mutant TPI consistently triggered MG production and a decrease in cell viability due to apoptotic mechanisms. Our data show for the first time that MG is playing a key role in the neuronal death induced by Aβ oligomers. This occurs because of TPI nitrotyrosination, which affects both tyrosines associated with the catalytic center.
Resumo:
Aeromonas hydrophila is the most common Aeromonas species causing infections in human and other animals such as amphibians, reptiles, fish and crustaceans. Pathogenesis of Aeromonas species have been reported to be associated with virulence factors such as lipopolysaccharides (LPS), bacterial toxins, bacterial secretion systems, flagella, and other surface molecules. Several mutant strains of A. hydrophila AH-3 were initially used to study their virulence in two animal species, Pacifastacus leniusculus (crayfish) and Tenebrio molitor larvae (mealworm). The AH-3 strains used in this study have mutations in genes involving the synthesis of flagella, LPS structures, secretion systems, and some other factors, which have been reported to be involved in A. hydrophila pathogenicity. Our study shows that the LPS (O-antigen and external core) is the most determinant A. hydrophila AH-3 virulence factor in both animals. Furthermore, we studied the immune responses of these hosts to infection of virulent or non-virulent strains of A. hydrophila AH-3. The AH-3 wild type (WT) containing the complete LPS core is highly virulent and this bacterium strongly stimulated the prophenoloxidase activating system resulting in melanization in both crayfish and mealworm. In contrast, the ΔwaaE mutant which has LPS without O-antigen and external core was non-virulent and lost ability to stimulate this system and melanization in these two animals. The high phenoloxidase activity found in WT infected crayfish appears to result from a low expression of pacifastin, a prophenoloxidase activating enzyme inhibitor, and this gene expression was not changed in the ΔwaaE mutant infected animal and consequently phenoloxidase activity was not altered as compared to non-infected animals. Therefore we show that the virulence factors of A. hydrophila are the same regardless whether an insect or a crustacean is infected and the O-antigen and external core is essential for activation of the proPO system and as virulence factors for this bacterium.
Resumo:
Insulin determination in blood sampled during post-mortem investigation has been repeatedly asserted as being of little diagnostic value due to the rapid occurrence of decompositional changes and blood haemolysis. In this study, we assessed the feasibility of insulin determination in post-mortem serum, vitreous humour, bile, and cerebrospinal and pericardial fluids in one case of fatal insulin self-administration and a series of 40 control cases (diabetics and non-diabetics) using a chemiluminescence enzyme immunoassay. In the case of suicide by insulin self-administration, insulin concentrations in pericardial fluid and bile were higher than blood clinical reference values, though lower than post-mortem serum concentration. Insulin concentrations in vitreous (11.50 mU/L) and cerebrospinal fluid (17.30 mU/L) were lower than blood clinical reference values. Vitreous insulin concentrations in non-diabetic control cases were lower than the estimated detection limit of the method. These preliminary results tend to confirm the usefulness of insulin determination in vitreous humour in situations of suspected fatal insulin administration. Additional findings pertaining to insulin determination in bile, pericardial, and cerebrospinal fluid would suggest that analysis performed in post-mortem serum and injection sites could be complemented, in individual cases, by investigations carried out in alternative biological fluids. Lastly, these results would indicate that analysis with chemiluminescence enzyme immunoassay may provide suitable data, similar to analysis with liquid chromatography-tandem mass spectrometry (LC-MS/MS) and immunoradiometric assay, to support the hypothesis of insulin overdose. Copyright © 2015 John Wiley & Sons, Ltd.
Resumo:
In order to investigate a possible association between soybean malate synthase (MS; L-malate glyoxylate-lyase, CoA-acetylating, EC 4.1.3.2) and glyoxysomal malate dehydrogenase (gMDH; (S)-malate: NAD(+) oxidoreductase, EC 1.1.1.37), two consecutive enzymes in the glyoxylate cycle, their elution profiles were analyzed on Superdex 200 HR fast protein liquid chromatography columns equilibrated in low- and high-ionic-strength buffers. Starting with soluble proteins extracted from the cotyledons of 5-d-old soybean seedlings and a 45% ammonium sulfate precipitation, MS and gMDH coeluted on Superdex 200 HR (low-ionic-strength buffer) as a complex with an approximate relative molecular mass (M(r)) of 670000. Dissociation was achieved in the presence of 50 mM KCl and 5 mM MgCl2, with the elution of MS as an octamer of M, 510 000 and of gMDH as a dimer of M, 73 000. Polyclonal antibodies raised to the native copurified enzymes recognized both denatured MS and gMDH on immunoblots, and their native forms after gel filtration. When these antibodies were used to screen a lambda ZAP II expression library containing cDNA from 3-d-old soybean cotyledons, they identified seven clones encoding gMDH, whereas ten clones encoding MS were identified using an antibody to SDS-PAGE-purified MS. Of these cDNA clones a 1.8 kb clone for MS and a 1.3-kb clone for gMDH were fully sequenced. While 88% identity was found between mature soybean gMDH and watermelon gMDH, the N-terminal transit peptides showed only 37% identity. Despite this low identity, the soybean gMDH transit peptide conserves the consensus R(X(6))HL motif also found in plant and mammalian thiolases.
Resumo:
Glyoxysomes are specialized peroxisomes present in various plant organs such as germinating cotyledons or senescing leaves. They are the site of beta-oxidation and of the glyoxylate cycle. These consecutive pathways are essential to the maintenance of gluconeogenesis initiated by the degradation of reserve or structural lipids. In contrast to mitochondrial beta-oxidation, which is prevalent in animal cells, glyoxysomal beta-oxidation and the glyoxylate cycle have no direct access to the mitochondrial respiratory chain because of the impermeability of the glyoxysomal membrane to the reduced cofactors. The necessity of NAD(+) regeneration can conceivably be fulfilled by membrane redox chains and/or by transmembrane shuttles. Experimental evidence based on the active metabolic roles of higher plant glyoxysomes and yeast peroxisomes suggests the coexistence of two mechanisms, namely a reductase/peroxidase membrane redox chain and a malate/aspartate shuttle susceptible to transfer electrons to the mitochondrial ATP generating system. Such a model interconnects beta-oxidation, the glyoxylate cycle, the respiratory chain and gluconeogenesis in such a way that glyoxysomal malate dehydrogenase is an essential and exclusive component of beta-oxidation (NAD(+) regeneration). Consequently, the classical view of the glyoxylate cycle is superseded by a tentative reactional scheme deprived of cyclic character.
Resumo:
INTRODUCTION: Approximately 2% of lung adenocarcinomas have BRAF (v-Raf murine sarcoma viral oncogene homolog B) mutations, including V600E and other types. Vemurafenib, dabrafenib, and sorafenib as BRAF inhibitors are currently tested in clinical trials, but access for patients is limited. The aim of this study was to document the clinical course of patients treated outside of clinical trials. METHODS: We conducted a retrospective multicenter cohort study in Europe of patients with advanced BRAF-mutant lung cancer treated with known BRAF inhibitors. Data were anonymized and centrally assessed for age, gender, smoking, histology, stage, local molecular diagnostic results, systemic therapies, and survival. Best response was assessed locally by RECIST1.1. RESULTS: We documented 35 patients treated in 17 centers with vemurafenib, dabrafenib, or sorafenib. Median age was 63 years (range 42-85); gender was balanced; 14 (40%) were never smokers; all (100%) had adenocarcinoma; 29 (83%) had V600E; 6 (17%) had other mutations; one of them had a concomitant KRAS mutation. Thirty (86%) patients had chemotherapy in the first line. Overall survival with first-line therapy was 25.3 months for V600E and 11.8 months for non-V600E. Thirty-one patients received one BRAF inhibitor, and four received a second inhibitor. Overall response rate with BRAF therapy was 53%, and disease control rate was 85%. Median progression-free survival with BRAF therapy was 5.0 months, and overall survival was 10.8 months. CONCLUSIONS: These results confirm the activity of targeted therapy in patients with BRAF-mutant lung adenocarcinoma. Further trials are warranted to study combination therapies and drug resistance mechanisms.
Resumo:
The cuticle covers the aerial parts of land plants, where it serves many important functions, including water retention. Here, a recessive cuticle mutant, eceriferum-ym (cer-ym), of Hordeum vulgare L. (barley) showed abnormally glossy spikes, sheaths, and leaves. The cer-ym mutant plant detached from its root system was hypersensitive to desiccation treatment compared with wild type plants, and detached leaves of mutant lost 41.8% of their initial weight after 1 h of dehydration under laboratory conditions, while that of the wild type plants lost only 7.1%. Stomata function was not affected by the mutation, but the mutant leaves showed increased cuticular permeability to water, suggesting a defective leaf cuticle, which was confirmed by toluidine blue staining. The mutant leaves showed a substantial reduction in the amounts of the major cutin monomers and a slight increase in the main wax component, suggesting that the enhanced cuticle permeability was a consequence of cutin deficiency. cer-ym was mapped within a 0.8 cM interval between EST marker AK370363 and AK251484, a pericentromeric region on chromosome 4H. The results indicate that the desiccation sensitivity of cer-ym is caused by a defect in leaf cutin, and that cer-ym is located in a chromosome 4H pericentromeric region.
Resumo:
Background: Huntington's disease (HD) is an inherited neurodegenerative disorder triggered by an expanded polyglutamine tract in huntingtin that is thought to confer a new conformational property on this large protein. The propensity of small amino-terminal fragments with mutant, but not wild-type, glutamine tracts to self-aggregate is consistent with an altered conformation but such fragments occur relatively late in the disease process in human patients and mouse models expressing full-length mutant protein. This suggests that the altered conformational property may act within the full-length mutant huntingtin to initially trigger pathogenesis. Indeed, genotypephenotype studies in HD have defined genetic criteria for the disease initiating mechanism, and these are all fulfilled by phenotypes associated with expression of full-length mutant huntingtin, but not amino-terminal fragment, in mouse models. As the in vitro aggregation of amino-terminal mutant huntingtin fragment offers a ready assay to identify small compounds that interfere with the conformation of the polyglutamine tract, we have identified a number of aggregation inhibitors, and tested whether these are also capable of reversing a phenotype caused by endogenous expressionof mutant huntingtin in a striatal cell line from the HdhQ111/Q111 knock-in mouse. Results: We screened the NINDS Custom Collection of 1,040 FDA approved drugs and bioactive compounds for their ability to prevent in vitro aggregation of Q58-htn 1¿171 amino terminal fragment. Ten compounds were identified that inhibited aggregation with IC50 < 15 ¿M, including gossypol, gambogic acid, juglone, celastrol, sanguinarine and anthralin. Of these, both juglone and celastrol were effective in reversing the abnormal cellular localization of full-length mutant huntingtin observed in mutant HdhQ111/Q111 striatal cells. Conclusions: At least some compounds identified as aggregation inhibitors also prevent a neuronal cellular phenotype caused by full-length mutant huntingtin, suggesting that in vitro fragment aggregation can act as a proxy for monitoring the disease-producing conformational property in HD. Thus, identification and testing of compounds that alter in vitro aggregation is a viable approach for defining potential therapeutic compounds that may act on the deleterious conformational property of full-length mutant huntingtin.
Resumo:
There is an increasing interest to seek new enzyme preparations for the development of new products derived from bioprocesses to obtain alternative bio-based materials. In this context, four non-commercial lipases from Pseudomonas species were prepared, immobilized on different low-cost supports, and examined for potential biotechnological applications. Results: To reduce costs of eventual scaling-up, the new lipases were obtained directly from crude cell extracts or from growth culture supernatants, and immobilized by simple adsorption on Accurel EP100, Accurel MP1000 and Celite (R) 545. The enzymes evaluated were LipA and LipC from Pseudomonas sp. 42A2, a thermostable mutant of LipC, and LipI. 3 from Pseudomonas CR611, which were produced in either homologous or heterologous hosts. Best immobilization results were obtained on Accurel EP100 for LipA and on Accurel MP1000 for LipC and its thermostable variant. Lip I. 3, requiring a refolding step, was poorly immobilized on all supports tested ( best results for Accurel MP1000). To test the behavior of immobilized lipases, they were assayed in triolein transesterification, where the best results were observed for lipases immobilized on Accurel MP1000. Conclusions: The suggested protocol does not require protein purification and uses crude enzymes immobilized by a fast adsorption technique on low-cost supports, which makes the method suitable for an eventual scaling up aimed at biotechnological applications. Therefore, a fast, simple and economic method for lipase preparation and immobilization has been set up. The low price of the supports tested and the simplicity of the procedure, skipping the tedious and expensive purification steps, will contribute to cost reduction in biotechnological lipase-catalyzed processes.
Resumo:
The synthesis of 1-deoxy-D-xylulose 5-phosphate (DXP), catalyzed by the enzyme DXP synthase (DXS), represents a key regulatory step of the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway for isoprenoid biosynthesis. In plants DXS is encoded by small multigene families that can be classified into, at least, three specialized subfamilies. Arabidopsis thaliana contains three genes encoding proteins with similarity to DXS, including the well-known DXS1/CLA1 gene, which clusters within subfamily I. The remaining proteins, initially named DXS2 and DXS3, have not yet been characterized. Here we report the expression and functional analysis of A. thaliana DXS2. Unexpectedly, the expression of DXS2 failed to rescue Escherichia coli and A. thaliana mutants defective in DXS activity. Coherently, we found that DXS activity was negligible in vitro, being renamed as DXL1 following recent nomenclature recommendation. DXL1 is targeted to plastids as DXS1, but shows a distinct expression pattern. The phenotypic analysis of a DXL1 defective mutant revealed that the function of the encoded protein is not essential for growth and development. Evolutionary analyses indicated that DXL1 emerged from DXS1 through a recent duplication apparently specific of the Brassicaceae lineage. Divergent selective constraints would have affected a significant fraction of sites after diversification of the paralogues. Furthermore, amino acids subjected to divergent selection and likely critical for functional divergence through the acquisition of a novel, although not yet known, biochemical function, were identified. Our results provide with the first evidences of functional specialization at both the regulatory and biochemical level within the plant DXS family.
Resumo:
Mycoplasma mycoides subsp. capri (Mmc) and subsp. mycoides (Mmm) are important ruminant pathogens worldwide causing diseases such as pleuropneumonia, mastitis and septicaemia. They express galactofuranose residues on their surface, but their role in pathogenesis has not yet been determined. The M. mycoides genomes contain up to several copies of the glf gene, which encodes an enzyme catalysing the last step in the synthesis of galactofuranose. We generated a deletion of the glf gene in a strain of Mmc using genome transplantation and tandem repeat endonuclease coupled cleavage (TREC) with yeast as an intermediary host for the genome editing. As expected, the resulting YCp1.1-Δglf strain did not produce the galactofuranose-containing glycans as shown by immunoblots and immuno-electronmicroscopy employing a galactofuranose specific monoclonal antibody. The mutant lacking galactofuranose exhibited a decreased growth rate and a significantly enhanced adhesion to small ruminant cells. The mutant was also 'leaking' as revealed by a β-galactosidase-based assay employing a membrane impermeable substrate. These findings indicate that galactofuranose-containing polysaccharides conceal adhesins and are important for membrane integrity. Unexpectedly, the mutant strain showed increased serum resistance.
Resumo:
BACKGROUND: Genome-wide association studies have linked CYP17A1 coding for the steroid hormone synthesizing enzyme 17α-hydroxylase (CYP17A1) to blood pressure (BP). We hypothesized that the genetic signal may translate into a correlation of ambulatory BP (ABP) with apparent CYP17A1 activity in a family-based population study and estimated the heritability of CYP17A1 activity. METHODS: In the Swiss Kidney Project on Genes in Hypertension, day and night urinary excretions of steroid hormone metabolites were measured in 518 participants (220 men, 298 women), randomly selected from the general population. CYP17A1 activity was assessed by 2 ratios of urinary steroid metabolites: one estimating the combined 17α-hydroxylase/17,20-lyase activity (ratio 1) and the other predominantly 17α-hydroxylase activity (ratio 2). A mixed linear model was used to investigate the association of ABP with log-transformed CYP17A1 activities exploring effect modification by urinary sodium excretion. RESULTS: Daytime ABP was positively associated with ratio 1 under conditions of high, but not low urinary sodium excretion (P interaction <0.05). Ratio 2 was not associated with ABP. Heritability estimates (SE) for day and night CYP17A1 activities were 0.39 (0.10) and 0.40 (0.09) for ratio 1, and 0.71 (0.09) and 0.55 (0.09) for ratio 2 (P values <0.001). CYP17A1 activities, assessed with ratio 1, were lower in older participants. CONCLUSIONS: Low apparent CYP17A1 activity (assessed with ratio 1) is associated with elevated daytime ABP when salt intake is high. CYP17A1 activity is heritable and diminished in the elderly. These observations highlight the modifying effect of salt intake on the association of CYP17A1 with BP.