947 resultados para MONO-N-DEALKYLDISOPYRAMIDE
Resumo:
The effects of diphosphine flexibility and bite angle on the structures and luminescence properties of Au(I) complexes have been investigated. A range of diphosphines based on heteroaromatic backbones [bis(2-diphenylphosphino)phenylether (dpephos), 9,9-dimethyl-4,5-bis(diphenylphosphino)xanthene (xantphos), and 4,6-bis(diphenylphosphino)dibenzofuran (dbfphos)] has been used to prepare mono- and digold derivatives. A clear relationship between the presence of aurophilic contacts and the emission properties of dinuclear complexes has been observed, with one of the complexes studied, [Au(2)Cl(2)(micro-xantphos)], exhibiting luminescence thermochromism.
Resumo:
This study investigates the use of co-melt fluidised bed granulation for the agglomeration of model pharmaceutical powders, namely, lactose mono-hydrate, PEG 10000, poly-vinyl pyrolidone and ibuprofen as a model drug. Granulation within the co-melt system was found to follow a nucleationâ??steady growthâ??coating regime profile. Using high molecular weight PEG binder, the granulation mechanism and thus the extent of granulation was found to be significantly influenced by binder viscosity. The compression properties of the granulate within the hot fluidised bed were correlated using a novel high temperature experimental procedure. It was found that the fracture stress and fractural modulus of the materials under hot processing conditions were orders of magnitude lower than those measured under ambient conditions. A range of particle velocities within the granulator were considered based on theoretical models. After an initial period of nucleation, the Stokes deformation number analysis indicated that only velocities within the high shear region of the fluidised bed were sufficient to promote significant granule deformation and therefore, coalescence. The data also indicated that larger granules de-fluidised preventing agglomeration by coalescence. Furthermore, experimental data indicated that dissipation of the viscous molten binder to the surface was the most important factor in the latter stages of the granulation process. From a pharmaceutical perspective the inclusion of the model drug, ibuprofen, combined with PVP in the co-melt process proved to be highly significant. It was found that using DSC analysis on the formulations that the decrease in the heat of fusion associated with the melting of ibuprofen within the FHMG systems may be attributed to interaction between PVP and ibuprofen through inter-molecular hydrogen bonding. This interaction decreases the crystallinity of ibuprofen and facilitates solubilisation and bioavailability within the solid matrix.
Resumo:
The speeds of sound u, densities ? and refractive indices nD of homologous series of mono-, di-, and tri-alkylamines were measured in the temperature range from 298.15 to 328.15 K. Isentropic and isothermal compressibilities ?S and ?T, molar refraction Rm, Eykman’s constant Cm, Rao’s molar sound function R, thermal expansion coefficient a, thermal pressure coefficient ?, and reduction parameters P*, V*, and T* in frameworks of the ERAS model for associated amines and Flory model for tertiary amines have been calculated from the measured experimental data. Applicability of the Rao theory and the ERAS and Flory models have been examined and discussed for the alkyl amines.
Resumo:
N-Tosyl-5,5-divinyloxazolidin-2-one undergoes a palladium-catalyzed decarboxylative cyclization across a range of electrophilic alkenes to give the corresponding pyrrolidine derivatives bearing two contiguous quaternary centres. Alkenes bearing two electron-withdrawing groups are required; pyrrolidines were not formed from mono-activated alkenes. Bulky, electron-rich phosphines promote pyrrolidine formation with less highly electrophilic, doubly activated alkenes, and a dramatic improvement is observed in the presence of iodide.
Resumo:
Successive treatment of 9-(phenylethynyl)fluoren-9-ol (1a), with HBr, butyllithium and chlorodiphenylphosphine furnishes 3,3-(biphenyl-2,2'-diyl)-1-diphenylphosphino-1-phenylallene (5). Moreover, reaction of 1a directly with chlorodiphenylphosphine yields the corresponding allenylphosphine oxide (6). The allenylphosphine (5), and Fe-2(CO)(9) initially form the phosphine-Fe(CO)(4) complex, 11, which is very thermally sensitive and readily loses a carbonyl ligand. In the resulting phosphine-Fe(CO)(3) system, 12, the additional site at iron is coordinated by the allene double bond adjacent to phosphorus; the Fe(CO) 3 tripod in 12 exhibits restricted rotation on the NMR time-scale even at room temperature. The corresponding chromium complex, (5)-Cr(CO)5 (9), has also been prepared. The gold complexes (5)AuCl (13), and [(5)-Au(THT)](+) X-, where (THT) is tetrahydrothiophene, and X = PF6 (14a), or ClO4 (14b), are analogous to the known triphenylphosphine-gold complexes. In contrast, in the (arene)(allenylphosphine) RuCl2 system the allene double bond adjacent to phosphorus displaces a chloride, and the resulting cationic species undergoes nucleophilic attack by water yielding ultimately a five-membered Ru-P-C=C-O ruthenacycle (17). Thus, the allenylphosphine (5), reacts initially as a conventional mono-phosphine but, when the metal centre has a readily displaceable ligand such as a carbonyl or halide, the allene double bond adjacent to the phosphorus can also function as a donor. X- ray crystal structures are reported for 5, 6, 11, 12, 13, 14a, 14b and 17.
Resumo:
Substituted phenols undergo a facile Rh carbenoid-mediated O-H insertion reaction with (EtO)2P(O)C(:N2)CO2R (I; R = Et, Me) to give 44-86% 2-aryloxyphosphonoacetates II (R1 = e.g., H, 4-Me, 4-Cl, 2-OH, 4-PhCH2O). Phenols contg. strongly electron withdrawing groups, bulky ortho-substituents or certain ortho-heteroatom substituents show reduced or variable yields. Catechol affords a mono-adduct which cyclizes to lactate III. Aniline inserts preferentially and exclusively over phenol in a competition reaction with I (R = Et) to give (EtO)2P(O)CH(NHPh)CO2Et. II are versatile intermediates in a prepn. of 2-aryloxy-3-phenylpropenoates IV by Wadsworth-Emmons reaction with benzaldehydes R2C6H4CHO (R2 = PhCH2O, 2-Cl, H). Dissolving Mg metal redn. provides a mild method for the conversion of propenoates IV into the corresponding propanoates.
Resumo:
An ideal cancer chemotherapeutic prodrug is completely inactive until metabolized by a tumour-specific enzyme, or by an enzyme that is only metabolically competent towards the prodrug under physiological conditions unique to the tumour. Human cancers, including colon, breast, lung, liver, kidney and prostate, are known to express cytochrome P450 (CYP) isoforms including 3A and 1A subfamily members. This raises the possibility that tumour CYP isoforms could be a focus for tumour-specific prodrug activation. Several approaches are reviewed, including identification of prodrugs activated by tumour-specific polymorphic CYPs, use of CYP-gene directed enzyme prodrug therapy and CYPs acting as reductases in hypoxic tumour regions. The last approach is best exemplified by AQ4N, a chemotherapeutic prodrug that is bioreductively activated by CYP3A. This study shows that freshly isolated murine T50/80 mammary carcinoma and RIF-1 fibrosarcoma 4-electron reduces AQ4N to its cytotoxic metabolite, AQ4 (T50/80 K-m = 26.7 mu M, V-max = 0.43 mu M/mg protein/min; RIF-1 K-m = 33.5 mu M, V-max = 0.42 mu M/mg protein/min) via AQM, a mono-N-oxide intermediate (T50/80 K-m = 37.5 mu M; V-max = 1.4 mu M/mg protein/min; RIF-1 K-m = 37.5 mu M; V-max = 1.2 mu M/mg protein/min). The prodrug conversion was dependent on NADPH and inhibited by air or carbon monoxide. Cyp3A mRNA and protein were both present in T50/80 carcinoma grown in vivo (RIF-1 not measured). Exposure of isolated tumour cells to anoxia (2 h) immediately after tumour excision increased cyp3A protein 2-3-fold over a 12 h period, after which time the cyp protein levels returned to the level found under aerobic conditions. Conversely, cyp3A mRNA expression showed an initial 3-fold decrease under both oxic and anoxic conditions; this returned to near basal levels after 8-24 h. These results suggest that cyp3A protein is stabilized in the absence of air, despite a decrease in cyp3A mRNA. Such a 'stabilization factor' may decrease cyp3A protein turnover without affecting the translation efficiency of cyp3A mRNA. Confirmation of the CYP activation of AQ4N bioreduction was shown with human lymphoblastoid cell microsomes transfected with CYP3A4, but not those transfected with CYP2B6 or cytochrome P450 reductase. AQ4N is also reduced to AQ4 in NADPH-fortified human renal cell carcinoma (K-m = 4 mu M, V-max = 3.5 pmol/mg protein/min) and normal kidney (K-m = 4 mu M, V-max = 4.0 pmol/mg protein/min), both previously shown to express CYP3A. Germane to the clinical potential of AQ4N is that although both normal and tumour cells are capable of reducing AQ4N to its cytotoxic species, the process requires low oxygen conditions. Hence, AQ4N metabolism should be restricted to hypoxic tumour cells. The isoform selectivity of AQ4N reduction, in addition to its air sensitivity, indicates that AQ4N haem coordination and subsequent oxygen atom transfer from the active-site-bound AQ4N is the likely mechanism of N-oxide reduction. The apparent increase in CYP3A expression under hypoxia makes this a particularly interesting application of CYPs for tumour-specific prodrug activation.
Resumo:
A comprehensive nonlinear model is put forward for coupled longitudinal to transverse displacements in a horizontal dust mono-layer, levitated under the combined influence of gravity and an electric and/or magnetic sheath field. A set of coupled nonlinear evolution equations are obtained in a discrete description, and a pair of coupled (Boussinesq-like) PDEs are obtained in the continuum approximation. Finally, the amplitude modulation of the coupled modes is discussed, pointing out the importance of the coupling. All these results are generic, i.e. valid for any assumed form of the inter-grain interaction potential U and the sheath potential Phi.
Resumo:
The enhanced stability of new mono-cis-dihydrodiol bacterial metabolites of tricyclic azaarenes has facilitated the dioxygenase-catalysed formation and isolation of the corresponding bis-cis-dihydrodiols (cis-tetraols) and a three step chemoenzymatic route to the derived arene oxide mammalian metabolites.
Resumo:
The biphenyl dioxygenase-catalyzed asymmetric mono-cis-dihydroxylation of the tetracyclic arenes chrysene 1A, benzo[c]phenanthridine 1B, and benzo[b]naphtho[2,1-d]thiophene 1C, has been observed to occur exclusively at the bay or pseudo-bay region using the bacterium Sphingomonas yanoikuyae B8/36. The mono-cis-dihydrodiol derivatives 2A and 2C, obtained from chrysene 1A by oxidation at the 3,4-bond (2A) and benzo[b]naphtho[2,1-d]thiophene 1C by oxidation at the 1,2-bond (2C), respectively, have been observed to undergo a further dioxygenase-catalyzed asymmetric cis-dihydroxylation at a second bay or pseudo-bay region bond to yield the corresponding bis-cis-dihydrodiols (cis-tetraols) 4A and 4C, the first members of a new class of microbial metabolites in the polycyclic arene series. The enantiopurities and absolute configurations of the new mono-cis-dihydrodiols 2B, 2C, and 3B were determined by H-1 NMR analyses of the corresponding (R)- and (S)-2-(1-methoxyethyl)benzeneboronate (MPBA) ester derivatives. The structure and absolute configurations of the bis-cis-dihydrodiols 4A and 4C were unambiguously determined by spectral analyses, stereochemical correlations, and, for the metabolite 4C, X-ray crystallographic analysis of the bis-acetonide derivative 7C. These results illustrate the marked preference of biphenyl dioxygenase for the cis-di- and tetra-hydroxylations of polycyclic arenes, at the more hindered bay or pseudo-bay regions, by exclusive addition from the same (si:si) face, to yield single enantiomers containing two and four chiral centers.
Resumo:
The biogeochemical cycle of arsenic (As) has been extensively studied over the past decades because As is an environmentally ubiquitous, nonthreshold carcinogen, which is often elevated in drinking water and food. It has been known for over a century that micro-organisms can volatilize inorganic As salts to arsines (arsine AsH(3), mono-, di-, and trimethylarsines, MeAsH(2), Me(2)AsH, and TMAs, respectively), but this part of the As cycle, with the exception of geothermal environs, has been almost entirely neglected because of a lack of suited field measurement approaches. Here, a validated, robust, and low-level field-deployable method employing arsine chemotrapping was used to quantify and qualify arsines emanating from soil surfaces in the field. Up to 240 mg/ha/y arsines was released from low-level polluted paddy soils (11.3 ± 0.9 mg/kg As), primarily as TMAs, whereas arsine flux below method detection limit was measured from a highly contaminated mine spoil (1359 ± 212 mg/kg As), indicating that soil chemistry is vital in understanding this phenomenon. In microcosm studies, we could show that under reducing conditions, induced by organic matter (OM) amendment, a range of soils varied in their properties, from natural upland peats to highly impacted mine-spoils, could all volatilize arsines. Volatilization rates from 0.5 to 70 µg/kg/y were measured, and AsH(3), MeAsH(2), Me(2)AsH, and TMAs were all identified. Addition of methylated oxidated pentavalent As, namely monomethylarsonic acid (MMAA) and dimethylarsinic acid (DMAA), to soil resulted in elevated yearly rates of volatilization with up to 3.5% of the total As volatilized, suggesting that the initial conversion of inorganic As to MMAA limits the rate of arsine and methylarsines production by soils. The nature of OM amendment altered volatilization quantitatively and qualitatively, and total arsines release from soil showed correlation between the quantity of As and the concentration of dissolved organic carbon (DOC) in the soil porewater. The global flux of arsines emanating from soils was estimated and placed in the context of As atmospheric inputs, with arsines contributing from 0.9 to 2.6% of the global budget.
Resumo:
Literature data on the toxicity of chlorophenols for three luminescent bacteria (Vibrio fischeri, and the lux-marked Pseudomonas fluorescens 10586s pUCD607 and Burkholderia spp. RASC c2 (Tn4431)) have been analyzed in relation to a set of computed molecular physico-chemical properties. The quantitative structure-toxicity relationships of the compounds in each species showed marked differences when based upon semi-empirical molecular-orbital molecular and atom based properties. For mono-, di- and tri-chlorophenols multiple linear regression analysis of V. fischeri toxicity showed a good correlation with the solvent accessible surface area and the charge on the oxygen atom. This correlation successfully predicted the toxicity of the heavily chlorinated phenols, suggesting in V. fischeri only one overall mechanism is present for all chlorophenols. Good correlations were also found for RASC c2 with molecular properties, such as the surface area and the nucleophilic super-delocalizability of the oxygen. In contrast the best QSTR for P. fluorescens contained the 2nd order connectivity index and ELUMO suggesting a different, more reactive mechanism. Cross-species correlations were examined, and between V. fischeri and RASC c2 the inclusion of the minimum value of the nucleophilic susceptibility on the ring carbons produced good results. Poorer correlations were found with P. fluorescens highlighting the relative similarity of V. fischeri and RASC c2, in contrast to that of P. fluorescens.
Resumo:
Methane activation via bromination can be a feasible route with selective synthesis of mono-bromomethane. It is known that the condensation of brominated products into higher hydrocarbons can result in coking and deactivation in the presence of di-bromomethane. In this study, selective production of methyl bromide was investigated over sulfated ZrO2 included SBA-15 structures. It was observed that the higher the ZrO2 amounts the higher the conversion, while the catalyst remained >99% selective for the monobrominated methane. Over 25 mol.% ZrO2 included SBA-15 catalyst with a BET surface area of 246 m(2)/g, methane was brominated with 69% conversion at 340 degrees C and only CH3Br was selectively produced. (C) 2009 Elsevier B.V. All rights reserved
Resumo:
Activation of methane with a halogen followed by the metathesis of methyl halide is a novel route from methane to higher hydrocarbons or oxygenates. Thermodynamic analysis revealed that bromine is the most suitable halogen for this goal. Analysis of the published data on the reaction kinetics in a CSTR enabled us to judge on the effects of temperature, reactor residence time and the feed concentrations of bromine and methane to the conversion of methane and the selectivity towards mono or dibromomethane. The analysis indicated that high dibromomethane selectivity is attainable (over 90%) accompanied by high methane conversions. The metathesis of dibromomethane can provide an alternative route to the conversion of methane (natural gas) economically with smaller installations than the current syn-gas route. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Hierarchical SSZ-13 zeolites were synthesized by combining N,N,N-trimethyl-1-adamantanammonium hydroxide (TMAdOH) as the structure-directing agent for chabazite formation with mono- and diquaternary ammonium-type and organosilane mesoporogens and extensively characterized for their structural, textural, and catalytic properties. Mesoporous SSZ-13 zeolites can be synthesized in one step by combining TMAdOH and the diquaternary ammonium-type surfactant C22-4-4Br2. The mesopore volume increases with the mesoporogen/SDA ratio. The hierarchical zeolites are highly crystalline and exhibit similar Brønsted acidity as SSZ-13. Hierarchical SSZ-13 zeolites display increased lifetime in packed-bed MTO experiments than conventional SSZ-13 at similar light olefins yield. The increased lifetime is due to better utilization of the micropore space. With increasing mesoporosity, the micropore space is used more efficiently, but also the rate of coke formation at the crystal periphery increases. Accordingly, the most stable zeolite is obtained at a relatively low C22-4-4Br2/SDA ratio. These zeolite catalysts can be regenerated without substantial loss of activity.