954 resultados para MOLECULAR MAGNETIC-MATERIALS
Resumo:
The performance of the SAOP potential for the calculation of NMR chemical shifts was evaluated. SAOP results show considerable improvement with respect to previous potentials, like VWN or BP86, at least for the carbon, nitrogen, oxygen, and fluorine chemical shifts. Furthermore, a few NMR calculations carried out on third period atoms (S, P, and Cl) improved when using the SAOP potential
Resumo:
PURPOSE: Cardiovascular magnetic resonance (CMR) has become a robust and important diagnostic imaging modality in cardiovascular medicine. However,insufficient image quality may compromise its diagnostic accuracy. No standardized criteria are available to assess the quality of CMR studies. We aimed todescribe and validate standardized criteria to evaluate the quality of CMR studies including: a) cine steady-state free precession, b) delayed gadoliniumenhancement, and c) adenosine stress first-pass perfusion. These criteria will serve for the assessment of the image quality in the setting of the Euro-CMR registry.METHOD AND MATERIALS: First, a total of 45 quality criteria were defined (35 qualitative criteria with a score from 0-3, and 10 quantitative criteria). Thequalitative score ranged from 0 to 105. The lower the qualitative score, the better the quality. The quantitative criteria were based on the absolute signal intensity (delayed enhancement) and on the signal increase (perfusion) of the anterior/posterior left ventricular wall after gadolinium injection. These criteria were then applied in 30 patients scanned with a 1.5T system and in 15 patients scanned with a 3.0T system. The examinations were jointly interpreted by 3 CMR experts and 1 study nurse. In these 45 patients the correlation between the results of the quality assessment obtained by the different readers was calculated.RESULTS: On the 1.5T machine, the mean quality score was 3.5. The mean difference between each pair of observers was 0.2 (5.7%) with a mean standarddeviation of 1.4. On the 3.0T machine, the mean quality score was 4.4. The mean difference between each pair of onservers was 0.3 (6.4%) with a meanstandard deviation of 1.6. The quantitative quality assessments between observers were well correlated for the 1.5T machine: R was between 0.78 and 0.99 (pCONCLUSION: The described criteria for the assessment of CMR image quality are robust and have a low inter-observer variability, especially on 1.5T systems.CLINICAL RELEVANCE/APPLICATION: These criteria will allow the standardization of CMR examinations. They will help to improve the overall quality ofexaminations and the comparison between clinical studies.
Resumo:
Parallel tracks for clinical scientists, basic scientists, and pediatric imagers was the novel approach taken for the highly successful 8th Annual Scientific Sessions of the Society for Cardiovascular Magnetic Resonance, held in San Francisco, California, January 21 to 23, 2005. Attendees were immersed in information on the latest scientific advances in cardiovascular magnetic resonance (CMR) from mice to man and technological advances from systems with field strengths from 0.5 T to 11.7 T. State-of-the-art applications were reviewed, spanning a wide range from molecular imaging to predicting outcome with CMR in large patient populations.
Resumo:
INTRODUCTION: Lumbar spinal stenosis (LSS) treatment is based primarily on the clinical criteria providing that imaging confirms radiological stenosis. The radiological measurement more commonly used is the dural sac cross-sectional area (DSCA). It has been recently shown that grading stenosis based on the morphology of the dural sac as seen on axial T2 MRI images, better reflects severity of stenosis than DSCA and is of prognostic value. This radiological prospective study investigates the variability of surface measurements and morphological grading of stenosis for varying degrees of angulation of the T2 axial images relative to the disc space as observed in clinical practice. MATERIALS AND METHODS: Lumbar spine TSE T2 three-dimensional (3D) MRI sequences were obtained from 32 consecutive patients presenting with either suspected spinal stenosis or low back pain. Axial reconstructions using the OsiriX software at 0°, 10°, 20° and 30° relative to the disc space orientation were obtained for a total of 97 levels. For each level, DSCA was digitally measured and stenosis was graded according to the 4-point (A-D) morphological grading by two observers. RESULTS: A good interobserver agreement was found in grade evaluation of stenosis (k = 0.71). DSCA varied significantly as the slice orientation increased from 0° to +10°, +20° and +30° at each level examined (P < 0.0001) (-15 to +32% at 10°, -24 to +143% at 20° and -29 to +231% at 30° of slice orientation). Stenosis definition based on the surface measurements changed in 39 out of the 97 levels studied, whereas the morphology grade was modified only in two levels (P < 0.01). DISCUSSION: The need to obtain continuous slices using the classical 2D MRI acquisition technique entails often at least a 10° slice inclination relative to one of the studied discs. Even at this low angulation, we found a significantly statistical difference between surface changes and morphological grading change. In clinical practice, given the above findings, it might therefore not be necessary to align the axial cuts to each individual disc level which could be more time-consuming than obtaining a single series of axial cuts perpendicular to the middle of the lumbar spine or to the most stenotic level. In conclusion, morphological grading seems to offer an alternative means of assessing severity of spinal stenosis that is little affected by image acquisition technique.
Resumo:
PURPOSE: A number of microarray studies have reported distinct molecular profiles of breast cancers (BC), such as basal-like, ErbB2-like, and two to three luminal-like subtypes. These were associated with different clinical outcomes. However, although the basal and the ErbB2 subtypes are repeatedly recognized, identification of estrogen receptor (ER) -positive subtypes has been inconsistent. Therefore, refinement of their molecular definition is needed. MATERIALS AND METHODS: We have previously reported a gene expression grade index (GGI), which defines histologic grade based on gene expression profiles. Using this algorithm, we assigned ER-positive BC to either high-or low-genomic grade subgroups and compared these with previously reported ER-positive molecular classifications. As further validation, we classified 666 ER-positive samples into subtypes and assessed their clinical outcome. RESULTS: Two ER-positive molecular subgroups (high and low genomic grade) could be defined using the GGI. Despite tracking a single biologic pathway, these were highly comparable to the previously described luminal A and B classification and significantly correlated to the risk groups produced using the 21-gene recurrence score. The two subtypes were associated with statistically distinct clinical outcome in both systemically untreated and tamoxifen-treated populations. CONCLUSION: The use of genomic grade can identify two clinically distinct ER-positive molecular subtypes in a simple and highly reproducible manner across multiple data sets. This study emphasizes the important role of proliferation-related genes in predicting prognosis in ER-positive BC.
Resumo:
The wreck U Pezzo, excavated within the Saint Florent Gulf in northern Corsica was identified as the pink, Saint Etienne, a merchant ship which sank on January 31, 1769. In order to determine the composition of organic materials used to coat the hull or to waterproof different parts of the pink, a study of several samples, using molecular biomarker and carbon isotopic analysis, was initiated. The results revealed that the remarkable yellow coat, covering the outside planks of the ship's bottom under the water line, is composed of sulfur, tallow (of ox and not of cetacean origin) and black pitch which corresponds to a mixture called ``couroi'' or ``stuff'. Onboard ropes had been submitted to a tarring treatment with pitch. Hairs mixed with pitch were identified in samples collected between the two layers of the hull or under the sheathing planking. The study also provides a key model for weathering of pitch, as different degrees of degradation were found between the surface and the heart of several samples. Accordingly, molecular parameters for alteration were proposed. Furthermore novel mixed esters between terpenic and diterpenic alcohols and the free major fatty acids (C(14:0), C(16:0), C(18:0)) were detected in the yellow coat. (C) 2009 Elsevier Ltd. All rights reserved.
Distal and proximal colon cancers differ in terms of molecular, pathological, and clinical features.
Resumo:
BACKGROUND: Differences exist between the proximal and distal colon in terms of developmental origin, exposure to patterning genes, environmental mutagens, and gut flora. Little is known on how these differences may affect mechanisms of tumorigenesis, side-specific therapy response or prognosis. We explored systematic differences in pathway activation and their clinical implications. MATERIALS AND METHODS: Detailed clinicopathological data for 3045 colon carcinoma patients enrolled in the PETACC3 adjuvant chemotherapy trial were available for analysis. A subset of 1404 samples had molecular data, including gene expression and DNA copy number profiles for 589 and 199 samples, respectively. In addition, 413 colon adenocarcinoma from TCGA collection were also analyzed. Tumor side-effect on anti-epidermal growth factor receptor (EGFR) therapy was assessed in a cohort of 325 metastatic patients. Outcome variables considered were relapse-free survival and survival after relapse (SAR). RESULTS: Proximal carcinomas were more often mucinous, microsatellite instable (MSI)-high, mutated in key tumorigenic pathways, expressed a B-Raf proto-oncogene, serine/threonine kinase (BRAF)-like and a serrated pathway signature, regardless of histological type. Distal carcinomas were more often chromosome instable and EGFR or human epidermal growth factor receptor 2 (HER2) amplified, and more frequently overexpressed epiregulin. While risk of relapse was not different per side, SAR was much poorer for proximal than for distal stage III carcinomas in a multivariable model including BRAF mutation status [N = 285; HR 1.95, 95% CI (1.6-2.4), P < 0.001]. Only patients with metastases from a distal carcinoma responded to anti-EGFR therapy, in line with the predictions of our pathway enrichment analysis. CONCLUSIONS: Colorectal carcinoma side is associated with differences in key molecular features, some immediately druggable, with important prognostic effects which are maintained in metastatic lesions. Although within side significant molecular heterogeneity remains, our findings justify stratification of patients by side for retrospective and prospective analyses of drug efficacy and prognosis.
Resumo:
PURPOSE: To investigate the ability of inversion recovery ON-resonant water suppression (IRON) in conjunction with P904 (superparamagnetic nanoparticles which consisting of a maghemite core coated with a low-molecular-weight amino-alcohol derivative of glucose) to perform steady-state equilibrium phase MR angiography (MRA) over a wide dose range. MATERIALS AND METHODS: Experiments were approved by the institutional animal care committee. Rabbits (n = 12) were imaged at baseline and serially after the administration of 10 incremental dosages of 0.57-5.7 mgFe/Kg P904. Conventional T1-weighted and IRON MRA were obtained on a clinical 1.5 Tesla (T) scanner to image the thoracic and abdominal aorta, and peripheral vessels. Contrast-to-noise ratios (CNR) and vessel sharpness were quantified. RESULTS: Using IRON MRA, CNR and vessel sharpness progressively increased with incremental dosages of the contrast agent P904, exhibiting constantly higher contrast values than T1 -weighted MRA over a very wide range of contrast agent doses (CNR of 18.8 ± 5.6 for IRON versus 11.1 ± 2.8 for T1 -weighted MRA at 1.71 mgFe/kg, P = 0.02 and 19.8 ± 5.9 for IRON versus -0.8 ± 1.4 for T1-weighted MRA at 3.99 mgFe/kg, P = 0.0002). Similar results were obtained for vessel sharpness in peripheral vessels, (Vessel sharpness of 46.76 ± 6.48% for IRON versus 33.20 ± 3.53% for T1-weighted MRA at 1.71 mgFe/Kg, P = 0.002, and of 48.66 ± 5.50% for IRON versus 19.00 ± 7.41% for T1-weighted MRA at 3.99 mgFe/Kg, P = 0.003). CONCLUSION: Our study suggests that quantitative CNR and vessel sharpness after the injection of P904 are consistently higher for IRON MRA when compared with conventional T1-weighted MRA. These findings apply for a wide range of contrast agent dosages.
Resumo:
PURPOSE: To implement and characterize a fluorine-19 ((19)F) magnetic resonance imaging (MRI) technique and to test the hypothesis that the (19)F MRI signal in steady state after intravenous injection of a perfluoro-15-crown-5 ether (PCE) emulsion may be exploited for angiography in a pre-clinical in vivo animal study. MATERIALS AND METHODS: In vitro at 9.4T, the detection limit of the PCE emulsion at a scan time of 10 min/slice was determined, after which the T(1) and T(2) of PCE in venous blood were measured. Permission from the local animal use committee was obtained for all animal experiments. 12 µl/g of PCE emulsion was intravenously injected in 11 mice. Gradient echo (1)H and (19)F images were obtained at identical anatomical levels. Signal-to-noise (SNR) and contrast-to-noise (CNR) ratios were determined for 33 vessels in both the (19)F and (1)H images, which was followed by vessel tracking to determine the vessel conspicuity for both modalities. RESULTS: In vitro, the detection limit was ∼400 µM, while the (19)F T(1) and T(2) were 1350±40 and 25±2 ms. The (19)F MR angiograms selectively visualized the vasculature (and the liver parenchyma over time) while precisely coregistering with the (1)H images. Due to the lower SNR of (19)F compared to (1)H (17±8 vs. 83±49, p<0.001), the (19)F CNR was also lower at 15±8 vs. 52±35 (p<0.001). Vessel tracking demonstrated a significantly higher vessel sharpness in the (19)F images (66±11 vs. 56±12, p = 0.002). CONCLUSION: (19)F magnetic resonance angiography of intravenously administered perfluorocarbon emulsions is feasible for a selective and exclusive visualization of the vasculature in vivo.
Resumo:
We report the design and validation of simple magnetic tweezers for oscillating ferromagnetic beads in the piconewton and nanometer scales. The system is based on a single pair of coaxial coils operating in two sequential modes: permanent magnetization of the beads through a large and brief pulse of magnetic field and generation of magnetic gradients to produce uniaxial oscillatory forces. By using this two step method, the magnetic moment of the beads remains constant during measurements. Therefore, the applied force can be computed and varies linearly with the driving signal. No feedback control is required to produce well defined force oscillations over a wide bandwidth. The design of the coils was optimized to obtain high magnetic fields (280 mT) and gradients (2 T/m) with high homogeneity (5% variation) within the sample. The magnetic tweezers were implemented in an inverted optical microscope with a videomicroscopy-based multiparticle tracking system. The apparatus was validated with 4.5 ¿m magnetite beads obtaining forces up to ~2 pN and subnanometer resolution. The applicability of the device includes microrheology of biopolymer and cell cytoplasm, molecular mechanics, and mechanotransduction in living cells.
Resumo:
We find that the use of V(100) buffer layers on MgO(001) substrates for the epitaxy of FePd binary alloys yields to the formation at intermediate and high deposition temperatures of a FePd¿FeV mixed phase due to strong V diffusion accompanied by a loss of layer continuity and strong increase of its mosaic spread. Contrary to what is usually found in this kind of systems, these mixed phase structures exhibit perpendicular magnetic anisotropy (PMA) which is not correlated with the presence of chemical order, almost totally absent in all the fabricated structures, even at deposition temperatures where it is usually obtained with other buffer layers. Thus the observed PMA can be ascribed to the V interdiffusion and the formation of a FeV alloy, being the global sample saturation magnetization also reduced.
Resumo:
The self-assembled growth of GaN nanorods on Si (111) substrates by plasma-assisted molecular beam epitaxy under nitrogen-rich conditions is investigated. An amorphous silicon nitride layer is formed in the initial stage of growth that prevents the formation of a GaN wetting layer. The nucleation time was found to be strongly influenced by the substrate temperature and was more than 30 min for the applied growth conditions. The observed tapering and reduced length of silicon-doped nanorods is explained by enhanced nucleation on nonpolar facets and proves Ga-adatom diffusion on nanorod sidewalls as one contribution to the axial growth. The presence of Mg leads to an increased radial growth rate with a simultaneous decrease of the nanorod length and reduces the nucleation time for high Mg concentrations.
Resumo:
Epitaxial Fe/MgO heterostructures have been grown on Si(001) by a combination of sputtering and laser ablation deposition techniques. The growth of MgO on Si(001) is mainly determined by the nature of the interface, with large lattice mismatch and the presence of an amorphous layer of unclear origin. Reflection high energy electron diffraction patterns of this MgO buffer layer are characteristic of an epitaxial, but disordered, structure. The structural quality of subsequent Fe and MgO layers continuously improves due to the better lattice match and the burial of defects. A weak uniaxial in-plane magnetic anisotropy is found superimposed on the expected cubic biaxial anisotropy. This additional anisotropy, of interfacial nature and often found in Fe/MgO and Fe/MgO/GaAs(001) systems, is less intense here due to the poorer MgO/Si interface quality compared with that of other systems. From the evolution of the anisotropy field with film thickness, magnetic anisotropy is also found to depend on the crystal quality. Kerr measurements of a Fe/MgO multilayered structure grown on Si show two different switching fields, suggesting magnetic coupling of two of the three Fe layers. Nevertheless, due to the little sensitivity to the bottom Fe film, independent switching of the three layers cannot be ruled out.