544 resultados para MODULATORS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Cnidarian - dinoflagellate intracellular symbioses are one of the most important mutualisms in the marine environment. They form the trophic and structural foundation of coral reef ecosystems, and have played a key role in the evolutionary radiation and biodiversity of cnidarian species. Despite the prevalence of these symbioses, we still know very little about the molecular modulators that initiate, regulate, and maintain the interaction between these two different biological entities. In this study, we conducted a comparative host anemone transcriptome analysis using a cDNA microarray platform to identify genes involved in cnidarian - algal symbiosis. Results: We detected statistically significant differences in host gene expression profiles between sea anemones ( Anthopleura elegantissima) in a symbiotic and non-symbiotic state. The group of genes, whose expression is altered, is diverse, suggesting that the molecular regulation of the symbiosis is governed by changes in multiple cellular processes. In the context of cnidarian dinoflagellate symbioses, we discuss pivotal host gene expression changes involved in lipid metabolism, cell adhesion, cell proliferation, apoptosis, and oxidative stress. Conclusion: Our data do not support the existence of symbiosis- specific genes involved in controlling and regulating the symbiosis. Instead, it appears that the symbiosis is maintained by altering expression of existing genes involved in vital cellular processes. Specifically, the finding of key genes involved in cell cycle progression and apoptosis have led us to hypothesize that a suppression of apoptosis, together with a deregulation of the host cell cycle, create a platform that might be necessary for symbiont and/or symbiont-containing host cell survival. This first comprehensive molecular examination of the cnidarian - dinoflagellate associations provides critical insights into the maintenance and regulation of the symbiosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The multivariable and progressive natural history of type 2 diabetes limits the effectiveness of available glucose-lowering drugs. Constraints imposed by comorbidities (notably cardiovascular disease and renal impairment) and the need to avoid hypoglycaemia, weight gain, and drug interactions further complicate the treatment process. These challenges have prompted the development of new formulations and delivery methods for existing drugs alongside research into novel pharmacological entities. Advances in incretin-based therapies include a miniature implantable osmotic pump to give continuous delivery of a glucagon-like peptide-1 receptor agonist for 6-12 months and once-weekly tablets of dipeptidyl peptidase-4 inhibitors. Hybrid molecules that combine the properties of selected incretins and other peptides are at early stages of development, and proof of concept has been shown for small non-peptide molecules to activate glucagon-like peptide-1 receptors. Additional sodium-glucose co-transporter inhibitors are progressing in development as well as possible new insulin-releasing biological agents and small-molecule inhibitors of glucagon action. Adiponectin receptor agonists, selective peroxisome proliferator-activated receptor modulators, cellular glucocorticoid inhibitors, and analogues of fibroblast growth factor 21 are being considered as potential new approaches to glucose lowering. Compounds that can enhance insulin receptor and post-receptor signalling cascades or directly promote selected pathways of glucose metabolism have suggested opportunities for future treatments. However, pharmacological interventions that are able to restore normal β-cell function and β-cell mass, normalise insulin action, and fully correct glucose homoeostasis are a distant vision.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study I investigated the mechanisms of modulation of neuronal network activity in rat primary motor cortex using pharmacological manipulations employing the in vitro brain slice technique. Preparation of the brain slice in sucrose-based aCSF produced slices with low viability. Introducing the neuroprotectants N-acetyl-cysteine, taurine and aminoguanidine to the preparatory method saw viability of slices increase significantly. Co-application of low dose kainic acid and carbachol consistently generated beta oscillatory activity in M1. Analyses indicated that network activity in M1 relied on the involvement of GABAA receptors. Dose-response experiments performed in M1 showed that beta activity can be modulated by benzodiazepine site ligands. Low doses of positive allosteric modulators consistently desynchronised beta oscillatory activity, a mechanism that may be driven by a1-subunit containing GABAA receptors. Higher doses increased the power of beta oscillatory activity. Whole-cell recordings in M1 uncovered three interneuronal subtypes regularly encountered in M1; Fast-spiking, regular-spiking non-Pyramidal and low threshold spiking. With the paradoxical effects of positive allosteric modulators in mind, subsequent voltage-clamp recordings in FS cells revealed a constitutively active tonic inhibitory current that could be modulated by zolpidem in two different ways. Low dose zolpidem increased the tonic inhibitory current in FS cells, consistent with the desynchronisation of network oscillatory activity seen at this concentration. High dose zolpidem decreased the inhibitory tonic current seen in FS cells, coinciding with an increase in oscillatory power. These studies indicate a fundamental role for a tonic inhibitory current in the modulation of network activity. Furthermore, desynchronisation of beta activity in M1 decreased as viability of the in vitro brain slice increased, suggesting that the extent of desynchronisation is dependent upon the pathophysiological state of the network. This indicates that low dose zolpidem could be used as a therapeutic agent specifically for the desynchronisation of pathological oscillations in oscillopathies such as Parkinson’s disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cellular changes during ageing are incompletely understood yet immune system dysfunction is implicated in the age-related decline in health. The acquired immune system shows a functional decline in ability to respond to new pathogens whereas serum levels of cytokines are elevated with age. Despite these age-associated increases in circulating cytokines, the function of aged macrophages is decreased. Pathogen-associated molecular pattern receptors such as Toll-like receptors (TLRs) are vital in the response of macrophages to pathological stimuli. Here we review the evidence for defective TLR signalling in normal ageing. Gene transcription, protein expression and cell surface expression of members of the TLR family of receptors and co-effector molecules do not show a consistent age-dependent change across model systems. However, there is evidence for impaired downstream signalling events, including inhibition of positive and activation of negative modulators of TLR induced signalling events. In this paper we hypothesize that despite a poor inflammatory response via TLR activation, the ineffective clearance of pathogens by macrophages increases the duration of their activation and contributes to perpetuation of inflammatory responses and ageing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many patients with type 2 diabetes are obese (diabesity), and the two conditions together impose a particularly complex therapeutic challenge. Several differently acting agents are often required at the same time, encouraging development of more single-tablet combinations. Longer-acting (once daily and once weekly) injected agonists of glucagon-like peptide-1 are due to provide additional options to stimulate insulin secretion with weight loss and minimal risk of hypoglycemia. Further, dipeptidyl peptidase-4 inhibitors ("weight-neutral" insulinotropic agents) are also expected. Sodium-glucose cotransporter 2 inhibitors offer a new option to reduce hyperglycemia and facilitate weight loss by increasing the elimination of glucose in the urine. Selective peroxisome proliferator-activated receptor modulators are being studied to produce compounds with desired effects. Many other agents with antidiabetic and antiobesity activity are progressing in clinical development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A three-node optical time-division multiplexing (OTDM) network is demonstrated that utilizes electroabsorption (EA) modulators as the core elements. Each node is self contained and performs its own clock recovery and synchronization. “Drop and insert” functionality is demonstrated for the first time with an EA modulator by completely removing a 10-Gb/s channel from a 40-Gb/s OTDM data stream. A different 10-Gb/s channel was subsequently inserted into the vacant time slot. Clock recovery is achieved by using an EA modulator in a novel bidirectional configuration. Bit-error-rate (BER) measurements are presented for each of the 10-Gb/s OTDM channels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis contains the results of experimental and numerical simulations of optical transmission systems using dispersion managed transmission techniques. Theoretical background is given on the propagation of pulses in optical fibres before extending the arguments to optical solitons, their applications and uses in communications. Dispersion management for transmission systems is introduced and then a brief explanation of quasi-linear pulse propagation is given. Techniques for performing laboratory transmission experiments are divulged and focus on the construction and operation of a recirculating loop. Laser sources and modulators for 40Gbit/s transmission rates are discussed and techniques for acquiring information from the resultant eye are explained.The operation of optically time division demultiplexing with a nonlinear elecro-absorption modulator is considered and then is replaced by the used of a linear electro-optic modulator and Dispersion unbalanced loop mirror (DILM). The use of nonlinearity as a positive effect for the use of processing and regenerating optical data is approached with an insight into the operation interferometers. Successful experimental results are given for the characterisation of the DILM and 40Gbit/ to l0Gbit/s demultiplexing is demonstrated.Modelling of a terrestrial style system is performed and the methods for computer simulation are discussed. The simulations model single channel 40Gbit/s transmission, 16 x 40Gbit/s WDM transmission and WDM transmission with varying channel separation. Three modulation formats are examined over the single mode fibre span. It is found that the dispersion managed soliton is not suitable for terrestrial style systems and that return-to-zero was the optimum format for the considered system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nitric oxide is a free-radical gas which can exert both protective and damaging effects. The objectives of the thesis were: (i) to investigate arginine metabolism in isolated rat gastric mucosal cells, (ii) to investigate the role of NO in the induction of ornithine decarboxylase in the rat gastric mucosa damaged by hypertonic saline in vivo, (iii) to expose primary cultures of guinea-pig gastric mucosal cells to oxidative challenge and an NO donor, and to investigate the response in terms of heat shock protein 72 (HSP 72) induction, and (iv) to investigate the induction of iNOS and the role of potential modulators of activity in gastric cell lines. Isolated rat gastric mucosal cells converted exogenous arginine to ornithine and citrulline. This metabolism of arginine was not affected by a range of NO synthase inhibitors, but was reduced by the arginase inhibitors NG-hydroxy-L-arginine and L-ornithine. Thus, the predominant pathway of arginine metabolism involves arginase and ornithine transcarbamoylase, not NO synthase. Pretreatment of rats with NG-nitro-L-arginine promoted activation of ornithine decarboxylase after intragastric hypertonic saline, but did not increase acid phosphatase release (damage). NO may therefore restrict activation of ornithine decarboxylase in response to damage. Exposure of primary cultures of guinea-pig gastric mucosal cells to S-nitroso-N-acetyl-penicillamine (SNAP) caused a concentration dependent induction of HSP 72, which was inhibited by an NO scavenger and blockade of transcription. The effect of SNAP was enhanced by decreasing the intracellular reduced thiol content with diethyl maleate, which itself also induced HSP 72 formation. Substantial amounts of NO may induce defensive responses in cells. Induction of iNOS was not detected in HGT-1 or AGS cells exposed to cytokines. Conclusions An arginase pathway may restrict availability of arginine for NO synthase in gastric mucosa or may be present to supply ornithine for polyamine synthesis. NO may modulate the response to damage of the stomach epithelium in vivo. Exogenous NO may induce a defensive response in gastric mucosal cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multidrug resistance protein 1 (MRP1) confers drug resistance and also mediates cellular efflux of many organic anions. MRP1 also transports glutathione (GSH); furthermore, this tripeptide stimulates transport of several substrates, including estrone 3-sulfate. We have previously shown that mutations of Lys(332) in transmembrane helix (TM) 6 and Trp(1246) in TM17 cause different substrate-selective losses in MRP1 transport activity. Here we have extended our characterization of mutants K332L and W1246C to further define the different roles these two residues play in determining the substrate and inhibitor specificity of MRP1. Thus, we have shown that TM17-Trp(1246) is crucial for conferring drug resistance and for binding and transport of methotrexate, estradiol glucuronide, and estrone 3-sulfate, as well as for binding of the tricyclic isoxazole inhibitor N-[3-(9-chloro-3-methyl-4-oxo-4H-isoxazolo-[4,3-c]quinolin-5-yl)-cyclohexylmethyl]-benzamide (LY465803). In contrast, TM6-Lys(332) is important for enabling GSH and GSH-containing compounds to serve as substrates (e.g., leukotriene C(4)) or modulators (e.g., S-decyl-GSH, GSH disulfide) of MRP1 and, further, for enabling GSH (or S-methyl-GSH) to enhance the transport of estrone 3-sulfate and increase the inhibitory potency of LY465803. On the other hand, both mutants are as sensitive as wild-type MRP1 to the non-GSH-containing inhibitors (E)-3-[[[3-[2-(7-chloro-2-quinolinyl)ethenyl]phenyl][[3-(dimethylamino)-3-oxopropyl]thio]methyl]thio]-propanoic acid (MK571), 1-[2-hydroxy-3-propyl-4-[4-(1H-tetrazol-5-yl)butoxy]phenyl]-ethanone (LY171883), and highly potent 6-[4'-carboxyphenylthio]-5[S]-hydroxy-7[E], 11[Z]14[Z]-eicosatetrenoic acid (BAY u9773). Finally, the differing abilities of the cysteinyl leukotriene derivatives leukotriene C(4), D(4), and F(4) to inhibit estradiol glucuronide transport by wild-type and K332L mutant MRP1 provide further evidence that TM6-Lys(332) is involved in the recognition of the gamma-Glu portion of substrates and modulators containing GSH or GSH-like moieties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multidrug resistance protein 1 (MRP1/ABCC1) is an ATP-dependent polytopic membrane protein that transports many anticancer drugs and organic anions. Its transport mechanism is multifaceted, especially with respect to the participation of GSH. For example, vincristine is cotransported with GSH, estrone sulfate transport is stimulated by GSH, or MRP1 can transport GSH alone, and this can be stimulated by compounds such as verapamil or apigenin. Thus, the interactions between GSH and MRP1 are mechanistically complex. To examine the similarities and differences among the various GSH-associated mechanisms of MRP1 transport, we have measured first the effect of GSH and several GSH-associated substrates/modulators on the binding and hydrolysis of ATP by MRP1 using 8-azidoadenosine-5'-[(32)P]-triphosphate ([(32)P]azidoATP) analogs, and second the initial binding of GSH and GSH-associated substrates/modulators to MRP1. We observed that GSH or its nonreducing derivative S-methylGSH (S-mGSH), but none of the GSH-associated substrate/modulators, caused a significant increase in [gamma-(32)P]azidoATP labeling of MRP1. Moreover, GSH and S-mGSH decreased levels of orthovanadate-induced trapping of [alpha-(32)P]azidoADP. [alpha-(32)P]azidoADP.Vi trapping was also decreased by estone sulfate, whereas vincristine, verapamil, and apigenin had no apparent effects on nucleotide interactions with MRP1. Furthermore, estrone sulfate and S-mGSH enhanced the effect of each other 15- and 10-fold, respectively. Second, although GSH binding increased the apparent affinity of MRP1 for all GSH-associated substrates/modulators tested, only estrone sulfate had a reciprocal effect on the apparent affinity of MRP1 for GSH. Overall, these results indicate significant mechanistic differences between MRP1-mediated transport of GSH and the ability of GSH to modulate MRP1 transport.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tissue transglutaminase (TG2) has been identified as an important extracellular crosslinking enzyme involved in matrix turnover and in bone differentiation. Here we report a novel cell adhesion/survival mechanism in human osteoblasts (HOB) which requires association of FN bound TG2 with the cell surface heparan sulphates in a transamidase independent manner. This novel pathway not only enhances cell adhesion on FN but also mediates cell adhesion and survival in the presence of integrin competing RGD peptides. We investigate the involvement of cell surface receptors and their intracellular signalling molecules to further explore the pathway mediated by this novel TG-FN heterocomplex. We demonstrate by siRNA silencing the crucial importance of the cell surface heparan sulphate proteoglycans syndecan-2 and syndecan-4 in regulating the compensatory effect of TG-FN on osteoblast cell adhesion and actin cytoskeletal formation in the presence of RGD peptides. By use of immunoprecipitation and inhibitory peptides we show that syndecan-4 interacts with TG2 and demonstrate that syndecan-2 and the a5ß1 integrins, but not a4ß1 function as downstream modulators in this pathway. Using function blocking antibodies, we show activation of a5ß1 occurs by an inside out signalling mechanism involving activation and binding of protein kinase PKCa and phosphorylation of focal adhesion kinase (FAK) at Tyr861 and activation of ERK1/2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a phase locking scheme that enables the demonstration of a practical dual pump degenerate phase sensitive amplifier for 10 Gbit/s non-return to zero amplitude shift keying signals. The scheme makes use of cascaded Mach Zehnder modulators for creating the pump frequencies as well as of injection locking for extracting the signal carrier and synchronizing the local lasers. An in depth optimization study has been performed, based on measured error rate performance, and the main degradation factors have been identified.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A three-node optical time-division multiplexing (OTDM) network is demonstrated that utilizes electroabsorption (EA) modulators as the core elements. Each node is self contained and performs its own clock recovery and synchronization. "Drop and insert" functionality is demonstrated for the first time with an EA modulator by completely removing a 10-Gb/s channel from a 40-Gb/s OTDM data stream. A different 10-Gb/s channel was subsequently inserted into the vacant time slot. Clock recovery is achieved by using an EA modulator in a novel bidirectional configuration. Bit-error-rate (BER) measurements are presented for each of the 10-Gb/s OTDM channels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel transmitter for 100 Gbit-Ethernet applications is proposed, based on the serial cascade of two 50 Gbit/s inverse-return-to-zero (also known as dark soliton) transmitters based on Mach-Zehnder modulators. The proposed transmitter and demultiplexer system uses commercially available components optimised for 40 Gbit/s applications. A 2.9 dB penalty at 100 Gbit/s is obtained using a single-stage OTDM demultiplexer and a preamplified receiver.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The transmembrane (TM) domains in P-glycoprotein (P-gp) contain the drug binding sites and undergo conformational changes driven by nucleotide catalysis to effect translocation. However, our understanding of exactly which regions are involved in such events remains unclear. A site-directed labelling approach was used to attach thiol-reactive probes to cysteines introduced into transmembrane segment 6 (TM6) in order to perturb function and infer involvement of specific residues in drug binding and/or interdomain communication. Covalent attachment of coumarin-maleimide at residue 339C within TM6 resulted in impaired ATP hydrolysis by P-gp. The nature of the effect was to reduce the characteristic modulation of basal activity caused by transported substrates, modulators and the potent inhibitor XR9576. Photoaffinity labelling of P-gp with [(3)H]-azidopine indicated that residue 339C does not alter drug binding per se. However, covalent modification of this residue appears to prevent conformational changes that lead to drug stimulation of ATP hydrolysis.