999 resultados para MIXED DENTITION
Resumo:
We derive a class of inequalities for detecting entanglement in the mixed SU(2) and SU(1, 1) systems based on the Schrodinger-Robertson indeterminacy relations in conjugation with the partial transposition. These inequalities are in general stronger than those based on the usual Heisenberg uncertainty relations for detecting entanglement. Furthermore, based on the complete reduction from SU(2) and SU(1,1) systems to bosonic systems, we derive some entanglement conditions for two-mode systems. We also use the partial reduction to obtain some inequalities in the mixed SU(2) (or SU(1, 1)) and bosonic systems.
Resumo:
N-Arylamides were exclusively obtained in moderate to good yields from selenium-catalyzed reactions of nitroaromatics with amides in the presence of CO and mixed organic bases Et3N and DBU.
Resumo:
Ce1-XNiXO2 oxides with X varying from 0.05 to 0.5 were prepared by different methods and characterized by XRD and TPR techniques. Ce(0.7)Mi(0.3)O(2) sample prepared by sol-gel method shows the highest reducibility and the highest catalytic activity for methane combustion. Three kinds of Ni phases co-exist in the Ce1-XNiXO2 catalysts prepared by sol-gel method: (i) aggregated NiO on the support CeO2, (ii) highly dispersed NiO with strong interaction with CeO2 and (iii) Ni atoms incorporated into CeO2 lattice. The distribution of different Ni species strongly depends on the preparation methods. The highly dispersed NiO shows the highest activity for methane combustion. The NiO aggregated on the support CeO2 shows lower catalytic activity for methane combustion, while the least catalytic activity is found for the Ni species incorporated into CeO2. Any oxygen vacancy formed in CeO2 lattice due to the incorporating of Ni atoms adsorbs and activates the molecular oxygen to form active oxygen species. So the highest catalytic activity for methane combustion on Ce0.7Ni0.3O2 catalyst is attributed not only to the highly dispersed Ni species but also to the more active oxygen species formed. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The mixed mode of reversed phase (RP) and strong canon-exchange (SCX) capillary electrochromatography (CEC) based on a monolithic capillary column has been developed. The capillary monolithic column was prepared by in situ copolymerization of 2-(sulfooxy)ethyl methacrylate (SEMA) and ethylene dimethacrylate (EDMA) in the presence of porogens. The sulfate group provided by the monomer SEMA on the monolithic bed is used for the generation of the electroosmotic flow (EOF) from the anode to the cathode, but at the same time serves as a SCX stationary phase. A mixed-mode (RP/SCX) mechanism for separation of peptides was observed in the monolithic column, comprising hydrophobic and electrostatic interaction as well as electrophoretic migration at a low pH value of mobile phase. A column efficiency of more than 280000 plates/m for the unretained compound has been obtained on the prepared monoliths. The relative standard deviations observed for to and retention factors of peptides were about 0.32% and less than 0.71% for ten consecutive runs, respectively. Effects of mobile phase compositions on the EOF of the monolithic column and on the separation of peptides were investigated. The selectivity on separation of peptides in the monolithic capillary column could be easily manipulated by varying the mobile phase composition.
Resumo:
Catalytic activity of Pt catalysts for soot oxidation was studied using temperature programmed reactions. The activity of Pt loaded over TiO2-SiO2 (Pt/TiO2-SiO2) showed higher activity than other Pt/MOx systems (MOx = TiO2, ZrO2, SiO2, Al2O3. TiO2-ZrO2. TiO2-Al2O3, ZrO2-SiO2, ZrO2-Al2O3, SiO2-Al2O3). The activity was highest when the molar ratio of TiO2/(TiO2 + SiO2) ranged from 0.4 to 0.7. The effect of pretreatment with a gas containing low SO2 concentrations on the activity was compared for Pt/SiO2, Pt/TiO2 and Pt/TiO2-SiO2. In the case of Pt/TiO2-SiO2, the activity was markedly promoted by the pretreatment whereas no variation in the activity was observed for Pt/SiO2. The difference in the behavior towards the SO, pretreatment was attributed to property difference in the supports for sulfate accumulation. The high activity of Pt/TiO2-SiO2 was also confirmed under practical conditions with a diesel engine exhaust using a catalyst-supported diesel particulate filter (DPF). (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Multiphoton ionization of the hydrogen,bonded pyrrole-water clusters (C4H5N)(n)(H2O)(m) is studied with a reflectron-time of flight mass spectrometer at 355 mn. With increasing partial concentration of pyrrole in a gas mixture source, a series of poly-pyrrole-water binary-mixed cluster ions can be observed, including unprotonated cluster ions [(C4H5N)(x)(H2O)(y)](+), protonated cluster ions [(C4H5N)(x)(H2O)(y)](+) and dehydrogenated cluster ions [(C4H4N)(C4H5N)(x)(H2O)(y)](+). Ab initio calculations of their structures, bond strengths, charge distributions and reaction energies are carried out. Stable structures of these clusters are obtained from the calculations. A probable formation mechanism of the cluster ions [(C4H5N)(x)(H2O)(y)](+), [(C4H5N)(x)(H2O)(y)]H+ and [(C4H4N)(C4H5N)(x) (H2O)(y)](+) is supposed to be the ionization of clusters followed by dissociation.