997 resultados para MICROSOMAL-ENZYME INDUCERS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An enhanced metabolic efficiency for accelerating the recovery of fat mass (or catch-up fat) is a characteristic feature of body weight regulation after weight loss or growth retardation and is the outcome of an "adipose-specific" suppression of thermogenesis, i.e., a feedback control system in which signals from the depleted adipose tissue fat stores exert a suppressive effect on thermogenesis. Using a previously described rat model of semistarvation-refeeding in which catch-up fat results from suppressed thermogenesis per se, we report here that the gene expression of stearoyl-coenzyme A desaturase 1 (SCD1) is elevated in skeletal muscle after 2 wk of semistarvation and remains elevated in parallel to the phase of suppressed thermogenesis favoring catch-up fat during refeeding. These elevations in the SCD1 transcript are skeletal muscle specific and are associated with elevations in microsomal ^9 desaturase enzyme activity, in the ^9 desaturation index, and in the relative content of SCD1-derived monounsaturates in several lipid fractions extracted from skeletal muscle. An elevated skeletal muscle SCD1, by desaturating the products of de novo lipogenesis and diverting them away from mitochondrial oxidation, would inhibit substrate cycling between de novo lipogenesis and lipid oxidation, thereby leading to a state of suppressed thermogenesis that regulates the body’s fat stores.—Mainieri, D., Summermatter, S., Seydoux, J., Montani, J. P., Rusconi, S., Russell, A. P., Boss, O., Buchala, A. J., Dulloo, A. G. A role for skeletal muscle stearoyl-CoA desaturase 1 in control of thermogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Consistent with its highest abundance in humans, cytochrome P450 (CYP) 3A is responsible for the metabolism of about 60% of currently known drugs. However, this unusual low substrate specificity also makes CYP3A4 susceptible to reversible or irreversible inhibition by a variety of drugs. Mechanism-based inhibition of CYP3A4 is characterised by nicotinamide adenine dinucleotide phosphate hydrogen (NADPH)-, time- and concentration-dependent enzyme inactivation, occurring when some drugs are converted by CYP isoenzymes to reactive metabolites capable of irreversibly binding covalently to CYP3A4. Approaches using in vitro, in silico and in vivo models can be used to study CYP3A4 inactivation by drugs. Human liver microsomes are always used to estimate inactivation kinetic parameters including the concentration required for half-maximal inactivation (K(I)) and the maximal rate of inactivation at saturation (k(inact)).Clinically important mechanism-based CYP3A4 inhibitors include antibacterials (e.g. clarithromycin, erythromycin and isoniazid), anticancer agents (e.g. tamoxifen and irinotecan), anti-HIV agents (e.g. ritonavir and delavirdine), antihypertensives (e.g. dihydralazine, verapamil and diltiazem), sex steroids and their receptor modulators (e.g. gestodene and raloxifene), and several herbal constituents (e.g. bergamottin and glabridin). Drugs inactivating CYP3A4 often possess several common moieties such as a tertiary amine function, furan ring, and acetylene function. It appears that the chemical properties of a drug critical to CYP3A4 inactivation include formation of reactive metabolites by CYP isoenzymes, preponderance of CYP inducers and P-glycoprotein (P-gp) substrate, and occurrence of clinically significant pharmacokinetic interactions with coadministered drugs.Compared with reversible inhibition of CYP3A4, mechanism-based inhibition of CYP3A4 more frequently cause pharmacokinetic-pharmacodynamic drug-drug interactions, as the inactivated CYP3A4 has to be replaced by newly synthesised CYP3A4 protein. The resultant drug interactions may lead to adverse drug effects, including some fatal events. For example, when aforementioned CYP3A4 inhibitors are coadministered with terfenadine, cisapride or astemizole (all CYP3A4 substrates), torsades de pointes (a life-threatening ventricular arrhythmia associated with QT prolongation) may occur.However, predicting drug-drug interactions involving CYP3A4 inactivation is difficult, since the clinical outcomes depend on a number of factors that are associated with drugs and patients. The apparent pharmacokinetic effect of a mechanism-based inhibitor of CYP3A4 would be a function of its K(I), k(inact) and partition ratio and the zero-order synthesis rate of new or replacement enzyme. The inactivators for CYP3A4 can be inducers and P-gp substrates/inhibitors, confounding in vitro-in vivo extrapolation. The clinical significance of CYP3A inhibition for drug safety and efficacy warrants closer understanding of the mechanisms for each inhibitor. Furthermore, such inactivation may be exploited for therapeutic gain in certain circumstances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glutathione S-transferases (GSTs) are the major detoxifying Phase II enzyme for eliminating electrophilic compounds. Mutations in GSTM1, GSTP1 and GSTT1 in Caucasian and GSTA1 in Chinese have been found to reduce enzyme activity. However, data on the impact of common genetic polymorphisms of GSTM1 and GSTP1 on enzyme activity in Chinese is lacking. This study aimed to investigate the effect of common GSTP1 and GSTM1 polymorphisms on erythrocyte GST activity in healthy Chinese (n = 196). GSTM1 null mutation (GSTM1*0) was analyzed by a PCR-Multiplex procedure, whereas GSTP1 313A → G polymorphism (resulting in Ile105Val at codon 105) was analyzed by PCR-restriction fragment length polymorphism (RFLP) analysis. Erythrocyte GST activity was measured using 1-chloro-2,4-dinitro-bezene (CDNB) as the model substrate. The frequency of GSTM1 null genotype was 54.3% and the frequency of GSTP1-Ile/Ile, -Ile/Val, and -Val/Val genotype was 60.7%, 35.2% and 4.1%, respectively, with a frequency of 21.7% for the 105 valine allele. Age, gender and smoking did not significantly affect the erythrocyte GST activities. The mean erythrocyte GST enzyme activity for GSTP1*-Ile/Val genotype group (3.53 ± 0.63 U/g Hb) was significantly lower than that for subjects with GSTP1-Ile/Ile genotype (4.25 ± 1.07 U/g Hb, P = 0.004), while subjects with the GSTP1-Val/Val genotype had the lowest enzyme activity (2.44 ± 0.67 U/g Hb). In addition, the GST activity in carriers of GSTM1*0/GSTP1-Ile/Ile was significantly higher than that of subjects inherited GSTM1*0/GSTP1-Ile/Val or GSTM1*0/GSTP1-Val/Val. However, there is no association between GSTM1 null mutation and reduced enzyme activity. GSTP1 codon 105 mutation led to reduced erythrocyte GST activity in Chinese. A combined GSTP1 and GSTM1 null mutations also resulted in significantly reduced GST activity. Further studies are needed to explore the clinical implications of GSTM1 and GSTP1 polymorphisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There has been increased interest in the use of immobilized enzymes in fruit juice industry for debittering of citrus fruit juices due to their high efficiency to remove bitter flavonoids. The structure of naringin, responsible for immediate bitterness, and of limonin, responsible for "delayed bitterness" has been discussed. This chapter also discusses various attempts that have been made to immobilize enzymes on an appropriate support so as to enable their use in debittering of citrus fruit juices. These include physicochemical and enzyme biotechnological approaches which makes the fruit juice more acceptable and cost effective to the consumer. Despite of high volume of production of citrus fruits and fruit juices, suitable processes to produce non-bitter citrus juice by immobilized enzymes technology has not yet commercialized globally.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many kinds of chemical and biological materials have been used as inducers of settlement of abalone larvae, as well as other species of marine gastropods, with responses being highly variable, even to the same chemical cue. The present study tested chemical inducers, γ-aminobutyric acid (GABA), δ-aminovaleric acid (5-AVA) and l-glutamic acid (GA) and the effects they have on larval settlement of Haliotis asinina. Additionally, a relatively inexpensive commercial substance, monosodium glutamate (MSG), was trialed. The datum provided shows all chemicals to be active inducers of settlement in this study, in order of effectiveness of 5-AVA, GABA, MSG to GA. Induction as adjudged from larval numbers settled was best at 6 h 62%, with 10−1 mM 5-AVA. At 24 h, induction was the highest at 78% when exposed to 10−2 mM 5-AVA. Larvae that were allowed to settle up to 72 h showed the highest numbers of settled larvae, and declined back to 60% when exposed to 10−2 5-AVA and 10−1 mM GABA respectively. Monosodium glutamate, although third in settlement standings would bypass the other chemicals, with regard to cost versus yield. The assessment of settlement surface, rough or smooth proved to be irrelevant, which had no significant impact on larval settlement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: There is emerging evidence that angiotensin stimulates adipocyte differentiation and lipogenesis. This study tested the hypothesis that inhibition of angiotensin II by treatment with an angiotensin-converting enzyme inhibitor, perindopril, would reduce fat mass in rats. Design: After a 12-day baseline, rats were divided into two groups: one was untreated and the other received perindopril (1.2 mg kg−1 per day) in drinking water for 26 days.Subjects: In total, 16 male Sprague–Dawley rats aged 10 weeks at the start of the study. Measurements: Plasma leptin was measured in samples collected at baseline, half-way through and at the end of treatment. Body weight, food and water intake were measured daily throughout the experiment. Body fat mass, bone and lean mass were determined by dual energy X-ray absorptiometry (DEXA) at the end of the treatment period. Results: Daily food intake was the same in both groups throughout the study. By the end of treatment, animals receiving perindopril showed a modest reduction in weight gain relative to the untreated animals (62.4±5.0 g vs 73.0±4.0 g; P<0.05). DEXA analysis showed that body composition was greatly altered and the perindopril-treated group had 26% less body fat mass than the untreated group (61.0±5.2 g vs 44.4±4.2 g; P<0.01). The reduction in body fat mass was correlated with reductions in the weight of both the epididymal and retroperitoneal fat pads (P<0.001). Similarly, plasma leptin was reduced by perindopril treatment (4.64±0.56 ng ml−1) compared to the untreated group (8.27±1.03 ng ml−1; P<0.001). In contrast, there were no differences in lean or bone mass between the two groups.Conclusion: Oral treatment with perindopril selectively reduced body fat mass without influencing daily food intake. In contrast, there were no differences in lean or bone mass between the two groups

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In addition to its role in the storage of fat, adipose tissue acts as an endocrine organ, and it contains a functional renin-angiotensin system (RAS). Angiotensin-converting enzyme (ACE) plays a key role in the RAS by converting angiotensin I to the bioactive peptide angiotensin II (Ang II). In the present study, the effect of targeting the RAS in body energy homeostasis and glucose tolerance was determined in homozygous mice in which the gene for ACE had been deleted (ACE-/-) and compared with wild-type littermates. Compared with wild-type littermates, ACE-/- mice had lower body weight and a lower proportion of body fat, especially in the abdomen. ACE-/- mice had greater fed-state total energy expenditure (TEE) and resting energy expenditure (REE) than wild-type littermates. There were pronounced increases in gene expression of enzymes related to lipolysis and fatty acid oxidation (lipoprotein lipase, carnitine palmitoyl transferase, long-chain acetyl CoA dehydrogenase) in the liver of ACE-/- mice and also lower plasma leptin. In contrast, no differences were detected in daily food intake, activity, fed-state plasma lipids, or proportion of fat excrete in fecal matter. In conclusion, the reduction in ACE activity is associated with a decreased accumulation of body fat, especially in abdominal fat depots. The decreased body fat in ACE-/- mice is independent of food intake and appears to be due to a high energy expenditure related to increased metabolism of fatty acids in the liver, with the additional effect of increased glucose tolerance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A variety of techniques for extracting carotenoids from the marine Thraustochytrium sp. ONC-T18 was compared. Specifically, the organic solvents acetone, ethyl acetate, and petroleum ether were tested, along with direct and indirect ultrasonic assisted extraction (probe vs bath) methods. Techniques that used petroleum ether/acetone/water (15:75:10, v/v/v) with 3 h of agitation, or 5 min in an ultrasonic bath, produced the highest extraction yields of total carotenoids (29−30.5 μg g-1). Concentrations up to 11.5 μg g-1 of canthaxanthin and 17.5 μg g-1 of β-carotene were detected in extracts stored for 6 weeks. Astaxanthin and echinenone were also detected as minor compounds. Extracts with and without antioxidants showed similar carotenoid concentration profiles. However, total carotenoid concentrations were approximately 8% higher when antioxidants were used. Finally, an easy-to-perform and inexpensive method to detect co-enzymes in ONC-T18 was also developed using silica gel TLC plates. Five percent methanol in toluene as a mobile phase consistently eluted co-enzyme Q10 standards and could separate the co-enzyme fractions present in ONC-T18.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 23.5-fold purified exoinulinase with a specific activity of 413 IU/mg and covalently immobilized on Duolite A568 has been used for the development of a continuous flow immobilized enzyme reactor for the hydrolysis of inulin. In a packed bed reactor containing 72 IU of exoinulinase from Kluyveromyces marxianus YS-1, inulin solution (5%, pH 5.5) with a flow rate of 4 mL/h was completely hydrolyzed at 55 °C. The reactor was run continuously for 75 days and its experimental half-life was 72 days under the optimized operational conditions. The volumetric productivity and fructose yield of the reactor were 44.5 g reducing sugars/L/h and 53.3 g/L, respectively. The hydrolyzed product was a mixture of fructose (95.8%) and glucose (4.2%) having an average fructose/glucose ratio of 24. An attempt has also been made to substitute pure inulin with raw Asparagus racemosus inulin to determine the operational stability of the developed reactor. The system remained operational only for 11 days, where 85.9% hydrolysis of raw inulin was achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maize (Zea mays L.) for the tested plants, meadow brown soil as the soil tested in order to microsomal cytochrome P450 content, superoxide dismutase (SOD), catalase (CAT) and peroxidase enzyme (POD) activity of indicators, the soil phenanthrene and pyrene in response to exposure to eco-toxicological studies. The results show that phenanthrene, pyrene exposure can cause detoxification of plant metabolism and antioxidant defense system of the stress response, caused varying degrees of detoxification of plant metabolism and changes in antioxidant capacity. P450 enzyme activity and low concentrations of phenanthrene and pyrene in a single - relevant exposure concentration (r = 0.834, P <0.01), and phenanthrene and pyrene exposure concentration was negatively correlated compound, saying that Ming Fei, pyrene compound exposed to lead detoxification metabolism of a reduced ability to detoxify the metabolism of plants have synergistic toxic effects; SOD activity and phenanthrene and pyrene in a single exposure concentration was negatively correlated, CAT activity and phenanthrene and pyrene in a single - exposure concentration was positively correlated, POD activity and water solubility of the Philippines positively correlated with the total concentration of pyrene in a negative correlation. SOD, CAT and POD activity and phenanthrene and pyrene were positively related to the concentration of compound exposure, saying that Ming Fei, pyrene complex degree of exposure to lead to reduced oxidative damage, oxidative damage of plants with antagonistic effects .

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Enprocal is a high-protein micro-nutrient rich formulated supplementary food designed to meet the nutritional needs of the frail elderly and be delivered to them in every day foods. We studied the potential of Enprocal to improve gut and immune health using simple and robust bioassays for gut cell proliferation, intestinal integrity/permeability, immunomodulatory, anti-inflammatory and anti-oxidative activities. Effects of Enprocal were compared with whey protein concentrate 80 (WPC), heat treated skim milk powder, and other commercially available milk derived products.

Results: Enprocal (undigested) and digested (Enprocal D) selectively enhanced cell proliferation in normal human intestinal epithelial cells (FHs74-Int) and showed no cytotoxicity. In a dose dependent manner Enprocal induced cell death in Caco-2 cells (human colon adencarcinoma epithelial cells). Digested Enprocal (Enprocal D: gut enzyme cocktail treated) maintained the intestinal integrity in transepithelial resistance (TEER) assay, increased the permeability of horseradish peroxidase (HRP) and did not induce oxidative stress to the gut epithelial cells. Enprocal D upregulated the surface expression of co-stimulatory (CD40, CD86, CD80), MHC I and MHC II molecules on PMA differentiated THP-1 macrophages in coculture transwell model, and inhibited the monocyte/lymphocyte (THP-1/Jurkat E6-1 cells)-epithelial cell adhesion. In cytokine secretion analyses, Enprocal D down-regulated the secretion of proinflammatory cytokines (IL-1β and TNF-α) and up-regulated IFN-γ, IL-2 and IL-10.

Conclusion: Our results indicate that Enprocal creates neither oxidative injury nor cytotoxicity, stimulates normal gut cell proliferation, up regulates immune cell activation markers and may aid in the production of antibodies. Furthermore, through downregulation of proinflammatory cytokines, Enprocal appears to be beneficial in reducing the effects of chronic gut inflammatory diseases such as inflammatory bowel disease (IBD). Stimulation of normal human fetal intestinal cell proliferation without cell cytotoxicity indicates it may also be given as infant food particularly for premature babies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The prevalence of type 2 diabetes has reached to an epidemic proportion in Sri Lanka. The need for achieving better control of blood glucose level has been evident in diabetes management. However it is not easy to achieve this goal in a large proportion of patients. This is partly due to limitations of currently available pharmacological agents which stimulate research on novel anti-diabetic agents with different mechanisms. Digestive enzymes have been targeted as potential avenues for modulation of blood glucose concentration through inhibition of the enzymatic breakdown of complex carbohydrates to meal derived glucose absorption. Acarbose is a widely used oral anti-diabetic drug which inhibits the α-glucosidase, enzyme responsible for breaking down of disaccharides and polysaccharides into glucose. Many herbal extracts have been found to posses similar inhibitory effects. Ginger (Zingiber officinale Roscoe) has developed a reputation in treatment of several diseases. In vitro enzymic inhibitory effect of ginger was investigated in this study. Enzymes α -amylase and α -glucosidase treated with either Acarbose or ginger extract were allowed to react with cooked rice and percentages of glucose content were measured. The glucosidase and amylase activities on the rice were inhibited by addition of ginger cause significant reduction in glucose percentages (36.86± 1.05 to 26.87± 2.17, P<0.05 and 49.04±0.65 to 35.35±2.22, P<0.05) which showed comparable results with Acarbose on glucosidase activity (36.86± 1.05 to, 27.8±1.32 P<0.05). Results of the study indicates ginger as a potential plant based amylase and glucosidase inhibitor in carbohydrate digestion but usage in glycaemic control in human has to be investigated further.