908 resultados para MEVALONATE KINASE DEFICIENCY
Resumo:
Although being a normal part of the skin flora, yeasts of the genus Malassezia are associated with several common dermatologic conditions including pityriasis versicolour, seborrhoeic dermatitis (SD), folliculitis, atopic eczema/dermatitis (AE/AD) and dandruff. While Malassezia spp. are aetiological agents of pityriasis versicolour, a causal role of Malassezia spp. in AE/AD and SD remains to be established. Previous reports have shown that fungi such as Candida albicans and Aspergillus fumigatus are able to efficiently activate the NLRP3 inflammasome leading to robust secretion of the pro-inflammatory cytokine IL-1β. To date, innate immune responses to Malassezia spp. are not well characterized. Here, we show that different Malassezia species could induce NLRP3 inflammasome activation and subsequent IL-1β secretion in human antigen-presenting cells. In contrast, keratinocytes were not able to secrete IL-1β when exposed to Malassezia spp. Moreover, we demonstrate that IL-1β secretion in antigen-presenting cells was dependent on Syk-kinase signalling. Our results identify Malassezia spp. as potential strong inducers of pro-inflammatory responses when taken up by antigen-presenting cells and identify C-type lectin receptors and the NLRP3 inflammasome as crucial actors in this process.
Resumo:
In Arabidopsis (Arabidopsis thaliana), the blue light photoreceptor phototropins (phot1 and phot2) fine-tune the photosynthetic status of the plant by controlling several important adaptive processes in response to environmental light variations. These processes include stem and petiole phototropism (leaf positioning), leaf flattening, stomatal opening, and chloroplast movements. The PHYTOCHROME KINASE SUBSTRATE (PKS) protein family comprises four members in Arabidopsis (PKS1-PKS4). PKS1 is a novel phot1 signaling element during phototropism, as it interacts with phot1 and the important signaling element NONPHOTOTROPIC HYPOCOTYL3 (NPH3) and is required for normal phot1-mediated phototropism. In this study, we have analyzed more globally the role of three PKS members (PKS1, PKS2, and PKS4). Systematic analysis of mutants reveals that PKS2 (and to a lesser extent PKS1) act in the same subset of phototropin-controlled responses as NPH3, namely leaf flattening and positioning. PKS1, PKS2, and NPH3 coimmunoprecipitate with both phot1-green fluorescent protein and phot2-green fluorescent protein in leaf extracts. Genetic experiments position PKS2 within phot1 and phot2 pathways controlling leaf positioning and leaf flattening, respectively. NPH3 can act in both phot1 and phot2 pathways, and synergistic interactions observed between pks2 and nph3 mutants suggest complementary roles of PKS2 and NPH3 during phototropin signaling. Finally, several observations further suggest that PKS2 may regulate leaf flattening and positioning by controlling auxin homeostasis. Together with previous findings, our results indicate that the PKS proteins represent an important family of phototropin signaling proteins.
Resumo:
A limited number of receptor tyrosine kinases (e.g., ErbB and fibroblast growth factor receptor families) have been genetically linked to breast cancer development. Here, we investigated the contribution of the Ret receptor tyrosine kinase to breast tumor biology. Ret was expressed in primary breast tumors and cell lines. In estrogen receptor (ER)alpha-positive MCF7 and T47D lines, the ligand (glial-derived neurotrophic factor) activated signaling pathways and increased anchorage-independent proliferation in a Ret-dependent manner, showing that Ret signaling is functional in breast tumor cells. Ret expression was induced by estrogens and Ret signaling enhanced estrogen-driven proliferation, highlighting the functional interaction of Ret and ER pathways. Furthermore, Ret was detected in primary cancers, and there were higher Ret levels in ERalpha-positive tumors. In summary, we showed that Ret is a novel proliferative pathway interacting with ER signaling in vitro. Expression of Ret in primary breast tumors suggests that Ret might be a novel therapeutic target in breast cancer.
Resumo:
Hearing loss can be caused by a variety of insults, including acoustic trauma and exposure to ototoxins, that principally effect the viability of sensory hair cells via the MAP kinase (MAPK) cell death signaling pathway that incorporates c-Jun N-terminal kinase (JNK). We evaluated the otoprotective efficacy of D-JNKI-1, a cell permeable peptide that blocks the MAPK-JNK signal pathway. The experimental studies included organ cultures of neonatal mouse cochlea exposed to an ototoxic drug and cochleae of adult guinea pigs that were exposed to either an ototoxic drug or acoustic trauma. Results obtained from the organ of Corti explants demonstrated that the MAPK-JNK signal pathway is associated with injury and that blocking of this signal pathway prevented apoptosis in areas of aminoglycoside damage. Treatment of the neomycin-exposed organ of Corti explants with D-JNKI-1 completely prevented hair cell death initiated by this ototoxin. Results from in vivo studies showed that direct application of D-JNKI-1 into the scala tympani of the guinea pig cochlea prevented nearly all hair cell death and permanent hearing loss induced by neomycin ototoxicity. Local delivery of D-JNKI-1 also prevented acoustic trauma-induced permanent hearing loss in a dose-dependent manner. These results indicate that the MAPK-JNK signal pathway is involved in both ototoxicity and acoustic trauma-induced hair cell loss and permanent hearing loss. Blocking this signal pathway with D-JNKI-1 is of potential therapeutic value for long-term protection of both the morphological integrity and physiological function of the organ of Corti during times of oxidative stress.
Resumo:
AbstractMyotonic dystrophy type 1 (DM1), also known as Steinert's disease, is an inherited autosomal dominant disease. DM1 is characterized by myotonia, muscular weakness and atrophy, but it has a multisystemic phenotype. The genetic basis of the disease is the abnormal expansion of CTG repeats in the 3' untranslated region of the DM protein kinase (DMPK) gene on chromosome 19. The size of the expansion correlates to the severity of the disease and the age of onset.Respiratory problems have long been recognized to be a major feature of the disease and are the main factor contributing to mortality ; however the mechanisms are only partly known. The aim of our study is to investigate whether respiratory failure results only from the involvement of the dystrophic process at the level of the respiratory muscles or comes also from abnormalities in the neuronal network that generates and controls the respiratory rhythm. The generation of valid transgenic mice displaying the human DM1 phenotype by the group of Dr. Gourdon provided us a useful tool to analyze the brain stem respiratory neurons, spinal phrenic motoneurons and phrenic nerves. We examined therefore these structures in transgenic mice carrying 350-500 CTGs and displaying a mild form of the disease (DM1 mice). The morphological and morphometric analysis of diaphragm muscle sections revealed a denervation of the end-plates (EPs), characterized by a decrease in size and shape complexity of EPs and a reduction in the density of acetylcholine receptors (AChRs). Also a strong and significant reduction in the number of phrenic unmyelinated fibers was detected, but not in the myelinated fibers. In addition, no pathological changes were detected in the cervical motoneurons and medullary respiratory centers (Panaite et al., 2008). These results suggest that the breathing rhythm is probably not affected in mice expressing a mild form of DM1, but rather the transmission of action potentials at the level of diaphragm NMJs is deficient.Because size of the mutation increases over generations, new transgenic mice were obtained from the mice with 350-500 CTGs, resulting from a large increase of CTG repeat in successive generations, these mice carry more than 1300 CTGs (DMSXL) and display a severe DM1 phenotype (Gomes-Pereira et al., 2007). Before we study the mechanism underlying the respiratory failure in DMSXL mice, we analyzed the peripheral nervous system (PNS) in these mice by electrophysiological, histological and morphometric methods. Our results provide strong evidence that DMSXL mice have motor neuropathy (Panaite et al., 2010, submitted). Therefore the DMSXL mice expressing severe DM1 features represent for us a good tool to investigate, in the future, the physiological, structural and molecular alterations underlying respiratory failure in DM1. Understanding the mechanism of respiratory deficiency will help to better target the therapy of these problems in DM1 patients. In addition our results may, in the future, orientate pharmaceutical and clinical research towards possible development of therapy against respiratory deficits associated with the DM1.RésuméLa dystrophic myotonique type 1 (DM1), aussi dénommée maladie de Steinert, est une maladie héréditaire autosomique dominante. Elle est caractérisée par une myotonie, une faiblesse musculaire avec atrophie et se manifeste aussi par un phénotype multisystémique. La base génétique de la maladie est une expansion anormale de répétitions CTG dans une région non traduite en 3' du gène de la DM protéine kinase (DMPK) sur le chromosome 19. La taille de l'expansion est corrélée avec la sévérité et l'âge d'apparition de DM1.Bien que les problèmes respiratoires soient reconnus depuis longtemps comme une complication de la maladie et soient le principal facteur contribuant à la mortalité, les mécanismes en sont partiellement connus. Le but de notre étude est d'examiner si l'insuffisance respiratoire de la DM1 est dû au processus dystrophique au niveau des muscles respiratoires ou si elle est entraînée aussi par des anomalies dans le réseau neuronal qui génère et contrôle le rythme respiratoire. La production par le groupe du Dr. Gourdon de souris transgéniques de DM1, manifestant le phénotype de DM1 humaine, nous a fourni un outil pour analyser les nerfs phréniques, les neurones des centres respiratoires du tronc cérébral et les motoneurones phréniques. Par conséquence, nous avons examiné ces structures chez des souris transgéniques portant 350-500 CTG et affichant une forme légère de la maladie (souris DM1). L'analyse morphologique et morphométrique des sections du diaphragme a révélé une dénervation des plaques motrices et une diminution de la taille et de la complexité de la membrane postsynaptîque, ainsi qu'une réduction de la densité des récepteurs à l'acétylcholine. Nous avons aussi détecté une réduction significative du nombre de fibres nerveuses non myélinisées mais pas des fibres myélinisées. Par ailleurs, aucun changement pathologique n'a été détecté pour les neurones moteurs médullaires cervicaux et centres respiratoires du tronc cérébral (Panaite et al., 2008). Ces résultats suggèrent que le iythme respiratoire n'est probablement pas affecté chez les souris manifestant une forme légère du DM1, mais plutôt que la transmission des potentiels d'action au niveau des plaques motrices du diaphragme est déficiente.Comme la taille du mutation augmente au fil des générations, de nouvelles souris transgéniques ont été générés par le groupe Gourdon; ces souris ont plus de 1300 CTG (DMSXL) et manifestent un phénotype sévère du DM1 (Gomes-Pereira et al., 2007). Avant d'étudier le mécanisme sous-jacent de l'insuffisance respiratoire chez les souris DMSXL, nous avons analysé le système nerveux périphérique chez ces souris par des méthodes électrophysiologiques, histologiques et morphométriques. Nos résultats fournissent des preuves solides que les souris DMSXL manifestent une neuropathie motrice (Panaite et al., 2010, soumis). Par conséquent, les souris DMSXL représentent pour nous un bon outil pour étudier, à l'avenir, les modifications physiologiques, morphologiques et moléculaires qui sous-tendent l'insuffisance respiratoire du DM1. La connaissance du mécanisme de déficience respiratoire en DM1 aidera à mieux cibler le traitement de ces problèmes aux patients. De plus, nos résultats pourront, à l'avenir, orienter la recherche pharmaceutique et clinique vers le développement de thérapie contre le déficit respiratoire associé à DM1.
Resumo:
The human PFKFB3 is composed of 19 exons spanning genomic region about 90,6 Kb (GenBank). Alternative splicing variants have been reported. The main variants corresponding to mRNAs of 4453 bp and 4224 bp for the variant 1 u-PFK2 (NM_004566.3) and variant 2 i-PFK2 (NM_001145443.1), respectively...
Resumo:
In vivo exposure to chronic hypoxia (CH) depresses myocardial performance and tolerance to ischemia, but daily reoxyenation during CH (CHR) confers cardioprotection. To elucidate the underlying mechanism, we tested the role of phosphatidylinositol-3-kinase-protein kinase B (Akt) and p42/p44 extracellular signal-regulated kinases (ERK1/2), which are known to be associated with protection against ischemia/reperfusion (I/R). Male Sprague-Dawley rats were maintained for two weeks under CH (10% O(2)) or CHR (as CH but with one-hour daily exposure to room air). Then, hearts were either frozen for biochemical analyses or Langendorff-perfused to determine performance (intraventricular balloon) and tolerance to 30-min global ischemia and 45-min reperfusion, assessed as recovery of performance after I/R and infarct size (tetrazolium staining). Additional hearts were perfused in the presence of 15 micromol/L LY-294002 (inhibitor of Akt), 10 micromol/L UO-126 (inhibitor of ERK1/2) or 10 micromol/L PD-98059 (less-specific inhibitor of ERK1/2) given 15 min before ischemia and throughout the first 20 min of reperfusion. Whereas total Akt and ERK1/2 were unaffected by CH and CHR in vivo, in CHR hearts the phosphorylation of both proteins was higher than in CH hearts. This was accompanied by better performance after I/R (heart rate x developed pressure), lower end-diastolic pressure and reduced infarct size. Whereas the treatment with LY-294002 decreased the phosphorylation of Akt only, the treatment with UO-126 decreased ERK1/2, and that with PD-98059 decreased both Akt and ERK1/2. In all cases, the cardioprotective effect led by CHR was lost. In conclusion, in vivo daily reoxygenation during CH enhances Akt and ERK1/2 signaling. This response was accompanied by a complex phenotype consisting in improved resistance to stress, better myocardial performance and lower infarct size after I/R. Selective inhibition of Akt and ERK1/2 phosphorylation abolishes the beneficial effects of the reoxygenation. Therefore, Akt and ERK1/2 have an important role to mediate cardioprotection by reoxygenation during CH in vivo.
Resumo:
D-JNKI1, a cell-permeable peptide inhibitor of the c-Jun N-terminal kinase (JNK) pathway, has been shown to be a powerful neuroprotective agent after focal cerebral ischemia in adult mice and young rats. We have investigated the potential neuroprotective effect of D-JNKI1 and the involvement of the JNK pathway in a neonatal rat model of cerebral hypoxia-ischemia. Seven-day-old rats underwent a permanent ligation of the right common carotid artery followed by 2h of hypoxia (8% oxygen). Treatment with D-JNKI1 (0.3mg/kg intraperitoneally) significantly reduced early calpain activation, late caspase-3 activation and, in the thalamus, autophagosome formation, indicating an involvement of JNK in different types of cell death: necrotic, apoptotic and autophagic. However the size of the lesion was unchanged. Further analysis showed that neonatal hypoxia-ischemia induced an immediate decrease in JNK phosphorylation (reflecting mainly P-JNK1) followed by a slow progressive increase (including P-JNK3 54kDa), whereas c-jun and c-fos expression were both strongly activated immediately after hypoxia-ischemia. In conclusion, unlike in adult ischemic models, JNK is only moderately activated after severe cerebral hypoxia-ischemia in neonatal rats and the observed positive effects of D-JNKI1 are insufficient to give neuroprotection. Thus, for perinatal asphyxia, D-JNKI1 can only be considered in association with other therapies.
Resumo:
A 47-year-old male taxi driver experienced multiple adverse drug reactions during therapy with clomipramine (CMI) and quetiapine for major depressive disorder, after having been unsuccessfully treated with adequate doses of mirtazapine and venlafaxine. Drug serum concentrations of CMI and quetiapine were significantly increased and pharmacogenetic testing showed a poor metabolizer status for CYP2D6, low CYP3A4/5 activity and normal CYP2C19 genotype. After reduction of the CMI dose and discontinuation of quetiapine, all ADR subsided except for the increase in liver enzymes. The latter improved but did not normalize completely, even months later, possibly due to concomitant cholelithiasis.
Resumo:
Islet-brain 1 [IB1; also termed c-Jun N-terminal kinase (JNK)-interacting protein 1 (JIP-1] is involved in the apoptotic signaling cascade of JNK and functions as a scaffold protein. It organizes several MAP kinases and the microtubule-transport motor protein kinesin and relates to other signal-transducing molecules such as the amyloid precursor protein. Here we have identified IB1/JIP-1 using different antibodies that reacted with either a monomeric or a dimeric form of IB1/JIP-1. By immunoelectron microscopy, differences in the subcellular localization were observed. The monomeric form was found in the cytoplasmic compartment and is associated with the cytoskeleton and with membranes, whereas the dimeric form was found in addition in nuclei. After treatment of mouse brain homogenates with alkaline phosphatase, the dimeric form disappeared and the monomeric form decreased its molecular weight, suggesting that an IB1/JIP-1 dimerization is phosphorylation dependent and that IB1 exists in several phospho- forms. N-methyl-D-aspartate receptor activation induced a dephosphorylation of IB1/JIP-1 in primary cultures of cortical neurons and reduced homodimerization. In conclusion, these data suggest that IB1/JIP-1 monomers and dimers may differ in compartmental localization and thus function as a scaffold protein of the JNK signaling cascade in the cytoplasm or as a transcription factor in nuclei.
Resumo:
Intrinsic resistance to the epidermal growth factor receptor (EGFR; HER1) tyrosine kinase inhibitor (TKI) gefitinib, and more generally to EGFR TKIs, is a common phenomenon in breast cancer. The availability of molecular criteria for predicting sensitivity to EGFR-TKIs is, therefore, the most relevant issue for their correct use and for planning future research. Though it appears that in non-small-cell lung cancer (NSCLC) response to gefitinib is directly related to the occurrence of specific mutations in the EGFR TK domain, breast cancer patients cannot be selected for treatment with gefitinib on the same basis as such EGFR mutations have beenreported neither in primary breast carcinomas nor in several breast cancer cell lines. Alternatively, there is a generalagreement on the hypothesis that the occurrence of molecular alterations that activate transduction pathways downstreamof EGFR (i.e., MEK1/MEK2 - ERK1/2 MAPK and PI-3'K - AKT growth/survival signaling cascades) significantly affect the response to EGFR TKIs in breast carcinomas. However,there are no studies so far addressing a role of EGF-related ligands as intrinsic breast cancer cell modulators of EGFR TKIefficacy. We recently monitored gene expression profiles andsub-cellular localization of HER-1/-2/-3/-4 related ligands (i.e., EGF, amphiregulin, transforming growth factor-α, ß-cellulin,epiregulin and neuregulins) prior to and after gefitinib treatment in a panel of human breast cancer cell lines. First, gefitinibinduced changes in the endogenous levels of EGF-related ligands correlated with the natural degree of breast cancer cellsensitivity to gefitinib. While breast cancer cells intrinsically resistant to gefitinib (IC50 ≥15 μM) markedly up-regulated(up to 600 times) the expression of genes codifying for HERspecific ligands, a significant down-regulation (up to 106 times)of HER ligand gene transcription was found in breast cancer cells intrinsically sensitive to gefitinib (IC50 ≤1 μM). Second,loss of HER1 function differentially regulated the nuclear trafficking of HER-related ligands. While gefitinib treatment induced an active import and nuclear accumulation of the HER ligand NRG in intrinsically gefitinib-resistant breastcancer cells, an active export and nuclear loss of NRG was observed in intrinsically gefitinib-sensitive breast cancer cells.In summary, through in vitro and pharmacodynamic studies we have learned that, besides mutations in the HER1 gene,oncogenic changes downstream of HER1 are the key players regulating gefitinib efficacy in breast cancer cells. It now appears that pharmacological inhibition of HER1 functionalso leads to striking changes in both the gene expression and the nucleo-cytoplasmic trafficking of HER-specific ligands,and that this response correlates with the intrinsic degree of breast cancer sensitivity to the EGFR TKI gefitinib. Therelevance of this previously unrecognized intracrine feedback to gefitinib warrants further studies as cancer cells could bypassthe antiproliferative effects of HER1-targeted therapeutics without a need for the overexpression and/or activation of other HER family members and/or the activation of HER-driven downstream signaling cascades
Resumo:
Cell polarity is essential for various cellular functions during both proliferative and developmental stages, and it displays dynamic alterations in response to intracellular and extracellular cues. However, the molecular mechanisms underlying spatiotemporal control of polarity transition are poorly understood. Here, we show that fission yeast Cki3 (a casein kinase 1γ homolog) is a critical regulator to ensure persistent monopolar growth during S phase. Unlike the wild type, cki3 mutant cells undergo bipolar growth when S phase is blocked, a condition known to delay transition from monopolar to bipolar growth (termed NETO [new end takeoff]). Consistent with this role, Cki3 kinase activity is substantially increased, and cells lose their viability in the absence of Cki3 upon an S-phase block. Cki3 acts downstream of the checkpoint kinase Cds1/Chk2 and calcineurin, and the latter physically interacts with Cki3. Autophosphorylation in the C terminus is inhibitory toward Cki3 kinase activity, and calcineurin is responsible for its dephosphorylation. Cki3 localizes to the plasma membrane, and this localization requires the palmitoyltransferase complex Erf2-Erf4. Membrane localization is needed not only for proper NETO timing but also for Cki3 kinase activity. We propose that Cki3 acts as a critical inhibitor of cell polarity transition under S-phase arrest.