916 resultados para MACROSCOPIC FIBERS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate numerically light-pulse combining and pulse compression using wave-collapse (self-focusing) energy-localization dynamics in a continuous-discrete nonlinear system, as implemented in a multicore fiber (MCF) using one-dimensional (1D) and 2D core distribution designs. Large-scale numerical simulations were performed to determine the conditions of the most efficient coherent combining and compression of pulses injected into the considered MCFs. We demonstrate the possibility of combining in a single core 90% of the total energy of pulses initially injected into all cores of a 7-core MCF with a hexagonal lattice. A pulse compression factor of about 720 can be obtained with a 19-core ring MCF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: The aim of our study was to evaluate the Romanian’s knowledge and attitudes regarding dietary fibers compared with other European countries. Materials and methods: We made a cross-sectional survey (part of multinational project from CI&DETS Research Centre, Instituto Politecnico Viseu, Portugal, with reference PROJ/CI&DETS/2014/0001) based on a questionnaire applied in 2015, over 670 Romanian consumers, focused on the attitudes and knowledge towards ingestion of foods rich in fibers. We used the software SPSS for statistics. Results: Our results showed that the knowledge about dietary fibers and also the ingestion of food products rich in fibers were low. The female participants ate more whole grains and fruits than males and pay more attention to food labelling, the Romanian people prefer to stay and eat home than at restaurants especially in rural areas, and the knowledge about fiber’s benefits was significantly related to high education and urban location. Comparing to other European countries, Romania had the highest level of knowledge about dietary fibers definition followed by Portugal, Turkey and Hungary, but the lowest regarding the fibers importance for health after Macedonia, Turkey and Latvia. Conclusion: We sustain the needs for more efficient community interventions and proper information about the importance of dietary fibers for our health and also for the dissemination of the nutritional standards among Romanian population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Presently, the scientists recognize the health benefits of food fibers in the menu and also plant food sources are at high interest both for general population and food companies. The food companies are responsible for a clear nutrition labelling that will assist consumers to make informed and healthy choices and health providers has to inform the population about the benefits of fibers.The aim of our study was to evaluate the Romanian knowledge and attitudes regarding dietary fibers from food products. We made a qualitative survey based on a questionnaire applied in 2015, over a period of 6 months, over 670 Romanian consumers. It was focused on testing the attitudes and knowledge towards ingestion of foods rich in fibers. For all data analysis we used the software SPSS, from IBM Inc. Our results showed that the knowledge about dietary fibers and also the ingestion of food products rich in fibers were low, and most of the subjects didn’t have any interest to read the nutritional information from food labels. The female participants ate more whole grains and fruits than males and pay more attention to food labelling. Romanian people prefer to stay and eat home than at restaurants especially in rural areas, and the knowledge about fibers benefits was significantly related to education and urban location. We underline the needs for more efficient community interventions and proper information about the importance of dietary fibers for our health and also to improve and disseminate nutritional standards and diet recommendation among population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increased exploitation of carbon fiber reinforced polymers (CFRP) is inevitably bringing about an increase in production scraps and end-of-life components, resulting in a sharp increase in CFRP waste. Therefore, it is of paramount importance to find efficient ways to reintroduce waste into the manufacturing cycle. At present, several recycling methods for treating CFRPs are available, even if all of them still have to be optimized. The step after CFRP recycling, and also the key to build a solid and sustainable CFRP recycling market, is represented by the utilization of Re-CFs. The smartest way to utilize recovered carbon fibers is through the manufacturing of recycled CFRPs, that can be done by re-impregnating the recovered fibers with a new polymeric matrix. Fused Filament Fabrication (FFF) is one of the most widely used additive manufacturing (3D printing) techniques that fabricates parts with a polymeric filament deposition process that allows to produce parts adding material layer-by-layer, only where it is needed, saving energy, raw material cost, and waste. The filament can also contain fillers or reinforcements such as recycled short carbon fibers and this makes it perfectly compliant with the re-application of the shortened recycled CF. Therefore, in this thesis work recycled and virgin carbon fiber reinforced PLA filaments have been initially produced using 5% and 10% of CFs load. Properties and characteristics of the filaments have been determined conducting different analysis (TGA, DMA, DSC). Subsequently the 5%wt. Re-CFs filament has been used to 3D print specimens for mechanical characterization (DMA, tensile test and CTE), in order to evaluate properties of printed PLA composites containing Re-CFs and evaluate the feasibility of Re-CFs in 3D printing application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rising of concerns around the scarcity of non-renewable resources has raised curiosity around new frontiers in the polymer science field. Biopolymers is a general term describing different kind of polymers that are linked with the biological world because of either monomer derivation, end of life degradation or both. The current work is aimed at studying one example of both biopolymers types. Polyhydroxibutyrate (P3HB) is a biodegradable microbial-produced polymer which holds massive potentiality as a substitute of polyolefins such as polypropylene. Though, its highly crystalline nature and stereoregularity of structure make it difficult to work with. The project P3HB-Mono take advantage of polarized Raman spectroscopy to see how annealing of chains with different weights influence the crystallinity and molecular structure of the polymer, eventually reflecting on its mechanical properties. The technique employed is also optimal in order to see how mesophase, a particular conformation of chains different from crystalline and amorphous phase, develops in the polymer structure and changes depending on temperature and mechanical stress applied to the fiber. Polycaprolactone (PCL) on the other hand is a biodegradable fossil-fuel polymer which has biocompatibility and bio-resorbability features. As a consequence this material is very appealing for medical industry and can be used for different applications in this field. One interesting option is to produce narrow and long liquid filled fibers for drug delivery inside human body, using a traditional technique in an innovative way. The project BioLiCoF investigates the feasability of producing liquid filled fibers using melt-spinning techniques and will examine the role that melt-spinning parameters and liquids employed as a core solution have on the final fiber. The physical analysis of the fibers is also interpreted and idea on future developments of the trials are suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tsunamis are rare events. However, their impact can be devastating and it may extend to large geographical areas. For low-probability high-impact events like tsunamis, it is crucial to implement all possible actions to mitigate the risk. The tsunami hazard assessment is the result of a scientific process that integrates traditional geological methods, numerical modelling and the analysis of tsunami sources and historical records. For this reason, analysing past events and understanding how they interacted with the land is the only way to inform tsunami source and propagation models, and quantitatively test forecast models like hazard analyses. The primary objective of this thesis is to establish an explicit relationship between the macroscopic intensity, derived from historical descriptions, and the quantitative physical parameters measuring tsunami waves. This is done first by defining an approximate estimation method based on a simplified 1D physical onshore propagation model to convert the available observations into one reference physical metric. Wave height at the coast was chosen as the reference due to its stability and independence of inland effects. This method was then implemented for a set of well-known past events to build a homogeneous dataset with both macroseismic intensity and wave height. By performing an orthogonal regression, a direct and invertible empirical relationship could be established between the two parameters, accounting for their relevant uncertainties. The target relationship is extensively tested and finally applied to the Italian Tsunami Effect Database (ITED), providing a homogeneous estimation of the wave height for all existing tsunami observations in Italy. This provides the opportunity for meaningful comparison for models and simulations, as well as quantitatively testing tsunami hazard models for the Italian coasts and informing tsunami risk management initiatives.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Snakebite is a neglected disease and serious health problem in Brazil, with most bites being caused by snakes of the genus Bothrops. Although serum therapy is the primary treatment for systemic envenomation, it is generally ineffective in neutralizing the local effects of these venoms. In this work, we examined the ability of 7,8,3'-trihydroxy-4'-methoxyisoflavone (TM), an isoflavone from Dipteryx alata, to neutralize the neurotoxicity (in mouse phrenic nerve-diaphragm preparations) and myotoxicity (assessed by light microscopy) of Bothrops jararacussu snake venom in vitro. The toxicity of TM was assessed using the Salmonella microsome assay (Ames test). Incubation with TM alone (200 μg/mL) did not alter the muscle twitch tension whereas incubation with venom (40 μg/mL) caused irreversible paralysis. Preincubation of TM (200 μg/mL) with venom attenuated the venom-induced neuromuscular blockade by 84% ± 5% (mean ± SEM; n = 4). The neuromuscular blockade caused by bothropstoxin-I (BthTX-I), the major myotoxic PLA2 of this venom, was also attenuated by TM. Histological analysis of diaphragm muscle incubated with TM showed that most fibers were preserved (only 9.2% ± 1.7% were damaged; n = 4) compared to venom alone (50.3% ± 5.4% of fibers damaged; n = 3), and preincubation of TM with venom significantly attenuated the venom-induced damage (only 17% ± 3.4% of fibers damaged; n = 3; p < 0.05 compared to venom alone). TM showed no mutagenicity in the Ames test using Salmonella strains TA98 and TA97a with (+S9) and without (-S9) metabolic activation. These findings indicate that TM is a potentially useful compound for antagonizing the neuromuscular effects (neurotoxicity and myotoxicity) of B. jararacussu venom.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Disconnectivity between the Default Mode Network (DMN) nodes can cause clinical symptoms and cognitive deficits in Alzheimer׳s disease (AD). We aimed to examine the structural connectivity between DMN nodes, to verify the extent in which white matter disconnection affects cognitive performance. MRI data of 76 subjects (25 mild AD, 21 amnestic Mild Cognitive Impairment subjects and 30 controls) were acquired on a 3.0T scanner. ExploreDTI software (fractional Anisotropy threshold=0.25 and the angular threshold=60°) calculated axial, radial, and mean diffusivities, fractional anisotropy and streamline count. AD patients showed lower fractional anisotropy (P=0.01) and streamline count (P=0.029), and higher radial diffusivity (P=0.014) than controls in the cingulum. After correction for white matter atrophy, only fractional anisotropy and radial diffusivity remained significantly lower in AD compared to controls (P=0.003 and P=0.05). In the parahippocampal bundle, AD patients had lower mean and radial diffusivities (P=0.048 and P=0.013) compared to controls, from which only radial diffusivity survived for white matter adjustment (P=0.05). Regression models revealed that cognitive performance is also accounted for by white matter microstructural values. Structural connectivity within the DMN is important to the execution of high-complexity tasks, probably due to its relevant role in the integration of the network.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lipoid proteinosis is a rare autosomal recessive disease characterized by the deposition of hyaline material in the skin and internal organs. The main clinical features are hoarseness and typical skin lesions. In this report we describe the endoscopic and radiologic findings in a Brazilian female patient presenting extensive gastrointestinal involvement and the evolution of the detected lesions in ten years of follow-up. Initial upper endoscopy and colonoscopy showed a similar pattern of multiple yellowish nodules throughout the esophagus, stomach, duodenum, and colons. Histological analysis confirmed the diagnosis of lipoid proteinosis. In addition, small bowel follow through demonstrated numerous well defined, round, small filling defects throughout the jejunum. Ten years later, the esophageal lesions remained the same, but none of the previous alterations were detected in the stomach, duodenum, and colons. In conclusion, lipoid proteinosis may affect all gastrointestinal organs with the same pattern of macroscopic and microscopic lesions. Some lesions may regress with increasing age.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Super elastic nitinol (NiTi) wires were exploited as highly robust supports for three distinct crosslinked polymeric ionic liquid (PIL)-based coatings in solid-phase microextraction (SPME). The oxidation of NiTi wires in a boiling (30%w/w) H2O2 solution and subsequent derivatization in vinyltrimethoxysilane (VTMS) allowed for vinyl moieties to be appended to the surface of the support. UV-initiated on-fiber copolymerization of the vinyl-substituted NiTi support with monocationic ionic liquid (IL) monomers and dicationic IL crosslinkers produced a crosslinked PIL-based network that was covalently attached to the NiTi wire. This alteration alleviated receding of the coating from the support, which was observed for an analogous crosslinked PIL applied on unmodified NiTi wires. A series of demanding extraction conditions, including extreme pH, pre-exposure to pure organic solvents, and high temperatures, were applied to investigate the versatility and robustness of the fibers. Acceptable precision of the model analytes was obtained for all fibers under these conditions. Method validation by examining the relative recovery of a homologous group of phthalate esters (PAEs) was performed in drip-brewed coffee (maintained at 60 °C) by direct immersion SPME. Acceptable recoveries were obtained for most PAEs in the part-per-billion level, even in this exceedingly harsh and complex matrix.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fibroblast cells grown in electrospun polymer scaffolds were stained with platinum blue, a heavy metal stain, and imaged using scanning electron microscopy. Good contrast on the cells was achieved compared with samples that were gold sputter coated. The cell morphology could be clearly observed, and the cells could be distinguished from the scaffold fibers. Here we optimized the required concentration of platinum blue for imaging cells grown in scaffolds and show that a higher concentration causes platinum aggregation. Overall, platinum blue is a useful stain for imaging cells because of its enhanced contrast using scanning electron microscopy (SEM). In the future it would be useful to investigate cell growth and morphology using three-dimensional imaging methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The alterations due to aging in the peripheral nerves can affect the physiology of these structures. Thus, the purpose of the present study was to describe the activity of the MMP-2 and MMP-9, as well as the structure and composition of the extracellular matrix of the rat sciatic nerve during maturation and aging. Our results have shown that the extracellular matrix of the sciatic nerve of 30-, 180- and 730-day-old Wistar rats present ultrastructural, morphometrical and biochemical changes during aging. The perineurium was the structure most affected by age, as evidenced by a decrease in thickness and in collagen fibril content. Cytochemical analysis detected proteoglycans in the basal membrane of Schwann cells and around perineural cells, as well as on the collagen fibrils of the perineurium and endoneurium at all ages. Biochemical analyses showed that the quantity of non-collagenous proteins was higher in 730-day-old animals compared to other ages, while the uronic acid content was higher in 30-day-old animals. Morphometrical analysis detected greater numbers of myelinated fibers and increased myelin thickness in 180-day-old animals. Zymography analysis detected greater amounts and activity of MMP-2 and MMP-9 in 180- and 730-day-old animals compared to younger rats. In conclusion, our results showed changes in the structural organization and composition of extracellular matrix of the sciatic nerve during aging, such as increase in the non-collagenous protein content and higher MMP-2 and MMP-9 activity, decrease in uronic acid concentration and in collagen fibril content in the perineurium, as well as degeneration of nerve fibers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

G-CSF has been shown to decrease inflammatory processes and to act positively on the process of peripheral nerve regeneration during the course of muscular dystrophy. The aims of this study were to investigate the effects of treatment of G-CSF during sciatic nerve regeneration and histological analysis in the soleus muscle in MDX mice. Six-week-old male MDX mice underwent left sciatic nerve crush and were G-CSF treated at 7 days prior to and 21 days after crush. Ten and twenty-one days after surgery, the mice were euthanized, and the sciatic nerves were processed for immunohistochemistry (anti-p75(NTR) and anti-neurofilament) and transmission electron microscopy. The soleus muscles were dissected out and processed for H&E staining and subsequent morphologic analysis. Motor function analyses were performed at 7 days prior to and 21 days after sciatic crush using the CatWalk system and the sciatic nerve index. Both groups treated with G-CSF showed increased p75(NTR) and neurofilament expression after sciatic crush. G-CSF treatment decreased the number of degenerated and regenerated muscle fibers, thereby increasing the number of normal muscle fibers. The reduction in p75(NTR) and neurofilament indicates a decreased regenerative capacity in MDX mice following a lesion to a peripheral nerve. The reduction in motor function in the crushed group compared with the control groups may reflect the cycles of muscle degeneration/regeneration that occur postnatally. Thus, G-CSF treatment increases motor function in MDX mice. Nevertheless, the decrease in baseline motor function in these mice is not reversed completely by G-CSF.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effectiveness of low-level laser therapy in muscle regeneration is still not well known. To investigate the effects of laser irradiation during muscle healing. For this purpose, 63 rats were distributed to 3 groups: non-irradiated control group (CG); group irradiated at 10 J/cm(2) (G10); and group irradiated at 50 J/cm(2) (G50). Each group was divided into 3 different subgroups (n=7), and on days 7, 14 and 21 post-injury the rats were sacrificed. Seven days post-surgery, the CG showed destroyed zones and extensive myofibrillar degeneration. For both treated groups, the necrosis area was smaller compared to the CG. On day 14 post-injury, treated groups demonstrated better tissue organization, with newly formed muscle fibers compared to the CG. On the 21(st) day, the irradiated groups showed similar patterns of tissue repair, with improved muscle structure at the site of the injury, resembling uninjured muscle tissue organization. Regarding collagen deposition, the G10 showed an increase in collagen synthesis. In the last period evaluated, both treated groups showed statistically higher values in comparison with the CG. Furthermore, laser irradiation at 10 J/cm(2) produced a down-regulation of cyclooxygenase 2 (Cox-2) immunoexpression on day 7 post-injury. Moreover, Cox-2 immunoexpression was decreased in both treated groups on day 14. Laser therapy at both fluencies stimulated muscle repair through the formation of new muscle fiber, increase in collagen synthesis, and down-regulation of Cox-2 expression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Following axotomy, the contact between motoneurons and muscle fibers is disrupted, triggering a retrograde reaction at the neuron cell body within the spinal cord. Together with chromatolysis, a hallmark of such response to injury is the elimination of presynaptic terminals apposing to the soma and proximal dendrites of the injured neuron. Excitatory inputs are preferentially eliminated, leaving the cells under an inhibitory influence during the repair process. This is particularly important to avoid glutamate excitotoxicity. Such shift from transmission to a regeneration state is also reflected by deep metabolic changes, seen by the regulation of several genes related to cell survival and axonal growth. It is unclear, however, how exactly synaptic stripping occurs, but there is substantial evidence that glial cells play an active role in this process. In one hand, immune molecules, such as the major histocompatibility complex (MHC) class I, members of the complement family and Toll-like receptors are actively involved in the elimination/reapposition of presynaptic boutons. On the other hand, plastic changes that involve sprouting might be negatively regulated by extracellular matrix proteins such as Nogo-A, MAG and scar-related chondroitin sulfate proteoglycans. Also, neurotrophins, stem cells, physical exercise and several drugs seem to improve synaptic stability, leading to functional recovery after lesion.