905 resultados para Louisiana State University and Agricultural and Mechanical College
Resumo:
Two recent studies of 9/11 literature are dismissive of the contributions that crime and espionage novels have made to ongoing efforts to map the significance of 9/11 and its aftermath. My essay contests the assumption that only literary fiction – which pays sufficient attention to trauma – can “bear witness” to the events of 9/11 and argues that such fiction is, in fact, singularly ill-equipped to illuminate the complex geo-political circumstances that 9/11 entrenched and transformed. By contrast, genre novels by John Le Carré and Don Winslow have responded in imaginative and critical ways to post-9/11 and avowedly trans-national securitization initiatives and hence to efforts to trouble traditional accounts of state sovereignty.
Resumo:
A maraging steel with a composition of Fe–12·94Ni–1·61Al–1·01Mo–0·23Nb (wt-%) was investigated. Optical, scanning electron and transmission electron microscopy and X-ray diffraction analysis were employed to study the microstructure of the steel after different aging periods at temperatures of 450–600°C. Hardness and Charpy impact toughness of the steel were measured. The study of microstructure and mechanical properties showed that nanosized precipitates were formed homogeneously during the aging process, which resulted in high hardness. As the aging time is prolonged, precipitates grow and hardness increases. Fractography of the as forged steel has shown mixed ductile and brittle fracture and has indicated that the steel has good toughness. Relationships among heat treatment, microstructure and mechanical properties are discussed. Further experiments using tensile testing and impact testing for aged steel were carried out.
Resumo:
Nanocomposites of poly(ethylene terephthalate) PET with a partially synthetic fluoromica were prepared by melt mixing and extruded into sheet and subjected to large-scale biaxial stretching. Transmission electron microscopy (TEM) analysis of the mica tactoids showed that biaxial stretching had caused the tactoids to be more orientated and with improved exfoliation. The moduli of the nanocomposites were enhanced with increasing mica loading and the reinforcement effect was higher when the stretch ratio was 2 or 2.5, accommodated by having more aligned tactoids and reduced agglomeration. Enhancement in modulus was less pronounced for a stretch ratio of 3. Storage modulus was enhanced more significantly above the glass transition temperature. The barrier properties were enhanced by addition of mica before and after stretching. The Halpin-Tsai theory underpredicted the relative modulus of the PET nanocomposites, whereas the Nielsen model over-predicted the relative permeability. POLYM. ENG. SCI., 2012. (c) 2011 Society of Plastics Engineers
Resumo:
Resonance Raman spectra of the T-1 excited states of Zn and free-base tetra-4-sulfonatophenylporphyrin (TPPS) have been recorded at room temperature in aqueous solution using two-colour time-resolved methods. The spectra of both sulfonated molecules are very similar to their tetraphenylporphyrin (TPP) analogues, which have been recorded in THF solution using the same pump-probe conditions, but they have higher signal-to-noise ratios because interference from strong solvent bands is reduced. Although two different T-1 spectra of Zn(TPP) have been reported these spectra differ slightly from each other and from the spectrum reported here, which has band positions very close (+/-6 cm(-1)) to those of Zn(TPPS). The high S/N ratios obtainable for the water-soluble porphyrins have allowed reliable polarization data to be recorded for their S-0 and T-1 states. This data set allows a realistic comparison of the changes in bonding associated with excitation of both free-base and Zn tetraarylporphyrins to the T-1 state.
Resumo:
Austenitization with lower temperature and intercritical annealing were introduced in the treatment of a maraging steel with a composition of Fe–12.94Ni–1.61Al–1.01Mo–0.23Nb (wt.%). Scanning electron microscopy was employed to study the microstructure after austenitization at 950 °C and intercritical annealing, followed by aging at 485 and 600 °C. X-ray diffraction (XRD) analysis was applied to evaluate the formation of retained or reverted austenite. Thermodynamic calculation was employed to calculate equilibrium phase mole fractions. Hardness and Charpy impact toughness of the steel were measured. Intercritical annealing treatments did not result in significant increase of hardness either before or after aging. The Charpy impact toughness of the alloy in aged condition was enhanced after austenitization at 950 °C. No austenite was observed in XRD. However, suspected reverted austenite was found after austenitization at 950 °C followed by aging at 600 °C for 4 h. Relationships among heat treatment, microstructure and mechanical properties are discussed.
Resumo:
Public funding of university and company-based R&D centres of excellence is widespread both in core and more peripheral regions. What is less well-known is whether these R&D centres can catalyse multi-directional, multi-actor and iterative innovation. Based on data from a real-time monitoring study, this article explores the development of 18 R&D centres’ external connections. University-based R&D centres establish more new connections than company-based centres and are more likely to be interacting with small or micro-firms. However, there is a general bias towards links with larger firms; micro, small and medium-sized enterprises also are less likely to be involved in collaborative R&D with research centres than other types of relationships. The results suggest the potential for R&D centres to act as a catalyst for open innovation but emphasise the need to ensure that the focus of the R&D being conducted is relevant to the needs of smaller firms.
Resumo:
The chemical and mechanical stability of slag activated with two different concentrations of sodium sulfate (Na2SO4) after exposure to elevated temperatures ranging from 200 to 800 °C with an increment of 200 °C has been examined. Compressive strengths and pH of the hardened pastes before and after the exposure were determined. The various decomposition phases formed were identified using X-ray diffraction, thermogravimetric analysis and scanning electron microscopy. The results indicated that Na2SO4 activated slag has a better resistance to the degradation caused by exposure to elevated temperature up to 600 °C than Portland cement system as its relative strengths are superior. The finer slag and higher Na2SO4 concentration gave better temperature resistance. Whilst the pH of the hardened pastes decreased with an increase in temperature, it still maintained a sufficiently high pH for the protection of reinforcing bar against corrosion.