927 resultados para Localized plasmons


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trimeric autotransporter proteins (TAAs) are important virulence factors of many Gram-negative bacterial pathogens. A common feature of most TAAs is the ability to mediate adherence to eukaryotic cells or extracellular matrix (ECM) proteins via a cell surface-exposed passenger domain. Here we describe the characterization of EhaG, a TAA identified from enterohemorrhagic Escherichia coli (EHEC) O157:H7. EhaG is a positional orthologue of the recently characterized UpaG TAA from uropathogenic E. coli (UPEC). Similarly to UpaG, EhaG localized at the bacterial cell surface and promoted cell aggregation, biofilm formation, and adherence to a range of ECM proteins. However, the two orthologues display differential cellular binding: EhaG mediates specific adhesion to colorectal epithelial cells while UpaG promotes specific binding to bladder epithelial cells. The EhaG and UpaG TAAs contain extensive sequence divergence in their respective passenger domains that could account for these differences. Indeed, sequence analyses of UpaG and EhaG homologues from several E. coli genomes revealed grouping of the proteins in clades almost exclusively represented by distinct E. coli pathotypes. The expression of EhaG (in EHEC) and UpaG (in UPEC) was also investigated and shown to be significantly enhanced in an hns isogenic mutant, suggesting that H-NS acts as a negative regulator of both TAAs. Thus, while the EhaG and UpaG TAAs contain some conserved binding and regulatory features, they also possess important differences that correlate with the distinct pathogenic lifestyles of EHEC and UPEC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Uropathogenic E. coli (UPEC) are the primary cause of urinary tract infections. Recent studies have demonstrated that UPEC can invade and replicate within epithelial cells, suggesting that this bacterial pathogen may occupy an intracellular niche within the host. Given that many intracellular pathogens target macrophages, we assessed the interactions between UPEC and macrophages. Colonization of the mouse bladder by UPEC strain CFT073 resulted in increased expression of myeloid-restricted genes, consistent with the recruitment of inflammatory macrophages to the site of infection. In in vitro assays, CFT073 was able to survive within primary mouse bone marrow-derived macrophages (BMM) up to 24 h post-infection. Three additional well-characterized clinical UPEC isolates associated with distinct UTI symptomatologies displayed variable long-term survival within BMM. UPEC strains UTI89 and VR50, originally isolated from patients with cystitis and asymptomatic bacteriuria respectively, showed elevated bacterial loads in BMM at 24 h post-infection as compared to CFT073 and the asymptomatic bacteriuria strain 83972. These differences did not correlate with differential effects on macrophage survival or initial uptake of bacteria. E. coli UTI89 localized to a Lamp1+ vesicular compartment within BMM. In contrast to survival within mouse BMM, intracellular bacterial loads of VR50 were low in both human monocyte-derived macrophages (HMDM) and in human T24 bladder epithelial cells. Collectively, these data suggest that some UPEC isolates may subvert macrophage anti-microbial pathways, and that host species differences may impact on intracellular UPEC survival.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soluble endoglin is an anti-angiogenic protein that is released from the placenta and contributes to both maternal endothelial dysfunction and the clinical features of severe preeclampsia. The mechanism through which soluble endoglin is released from the placenta is currently unknown; however, recent work in colorectal cancer identified matrix metalloproteinase 14 (MMP-14) as the cleavage protease of endoglin. To determine whether this is also the mechanism responsible for soluble endoglin release in preeclampsia, we investigated the expression of MMP-14 within the placenta and the effects of its inhibition on soluble endoglin release. Placentas were obtained from severe, early onset preeclamptic pregnancies (n = 8) and gestationally matched preterm controls (n = 8). MMP-14 was predominately localized to the syncytiotrophoblast. Results from a proximity ligation assay showed protein interactions between endogenous MMP-14 and endoglin within the preeclamptic placenta. To demonstrate that this interaction produces soluble endoglin, we treated trophoblastic BeWo cells with either a broad-spectrum MMP inhibitor (GM6001) or MMP-14 siRNA. Both treatments produced a decrease in soluble endoglin (P ≤ 0.05). Treatment of mice bearing BeWo xenografts with GM6001 decreased circulating soluble endoglin levels in mouse serum (P ≤ 0.05). These findings indicate that MMP-14 is the likely cleavage protease of endoglin in the setting of preeclampsia. This approach provides a novel method for the development of potential therapeutics to reduce circulating soluble endoglin and ameliorate the clinical features of severe preeclampsia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We characterised the effects of selective oestrogen receptor modulators (SERM) in explant cultures of human endometrium tissue. Endometrium tissues were cultured for 24 h in Millicell-CM culture inserts in serum-free medium in the presence of vehicle,17 beta-estradiol (17 beta-E2,1 nM), oestrogen receptor (ER) antagonist ICI 164.384 (40 nM), and 4-OH-tamoxifen (40 nM), raloxifene (4 nM), lasofoxifene (4 nM)and acolbifene (4 nM). Protein expression of ER alpha, ER beta 1 and Ki-67 were evaluated by immunohistochemistry (IHC). The proliferative fraction was assessed by counting the number of Ki-67 positive cells. Nuclear staining of ER( and ER(1 was observed in the glandular epithelium and stroma of pre- and postmenopausal endometrium. ER(1 protein was also localized in the endothelial cells of blood vessels. Treating premenopausal endometrium tissue with 17 beta-E2 increased the fraction of Ki-67 positive cells (p < 0.001) by 55% in glands compared to the control. Raloxifene (4 nM) increased (p < 0.05) the Ki-67 positive fraction. All other SERMS did not affect proliferation in this model. Treating postmenopausal endometrium with 17(-E2 increased (p < 0.001) the fraction of Ki-67 positive cells by 250% in glands compared to the control. A similar effect was also seen for 4-OH-tamoxifen, whereas the rest of SERMs did not stimulate proliferation. We demonstrated that oestradiol increases the fraction of proliferating cells in short term explant cultures of postmenopausal endometrium. In addition, we were able to reveal the agonistic properties of 4-OH-tamoxifen and confirm that raloxifene and next-generation SERMs acolbifene and lasofoxifene were neutral on the human postmenopausal endometrium. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pavlovian fear conditioning is an evolutionary conserved and extensively studied form of associative learning and memory. In mammals, the lateral amygdala (LA) is an essential locus for Pavlovian fear learning and memory. Despite significant progress unraveling the cellular mechanisms responsible for fear conditioning, very little is known about the anatomical organization of neurons encoding fear conditioning in the LA. One key question is how fear conditioning to different sensory stimuli is organized in LA neuronal ensembles. Here we show that Pavlovian fear conditioning, formed through either the auditory or visual sensory modality, activates a similar density of LA neurons expressing a learning-induced phosphorylated extracellular signal-regulated kinase (p-ERK1/2). While the size of the neuron population specific to either memory was similar, the anatomical distribution differed. Several discrete sites in the LA contained a small but significant number of p-ERK1/2-expressing neurons specific to either sensory modality. The sites were anatomically localized to different levels of the longitudinal plane and were independent of both memory strength and the relative size of the activated neuronal population, suggesting some portion of the memory trace for auditory and visually cued fear conditioning is allocated differently in the LA. Presenting the visual stimulus by itself did not activate the same p-ERK1/2 neuron density or pattern, confirming the novelty of light alone cannot account for the specific pattern of activated neurons after visual fear conditioning. Together, these findings reveal an anatomical distribution of visual and auditory fear conditioning at the level of neuronal ensembles in the LA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to investigate the expression of GABAB receptors, a subclass of receptors to the inhibitory neurotransmitter gamma-aminobutyric acid (GABAB), in human aortic smooth muscle cells (HASMCs), and to explore if altering receptor activation modified intracellular Ca(2+) concentration ([Ca(2+)]i) of HASMCs. Real-time PCR, western blots and immunofluorescence were used to determine the expression of GABABR1 and GABABR2 in cultured HASMCs. Immunohistochemistry was used to localize the two subunits in human left anterior descending artery (LAD). The effects of the GABAB receptor agonist baclofen on [Ca(2+)]i in cultured HASMCs were demonstrated using fluo-3. Both GABABR1 and GABABR2 mRNA and protein were identified in cultured HASMCs and antibody staining was also localized to smooth muscle cells of human LAD. 100 μM baclofen caused a transient increase of [Ca(2+)]i in cultured HASMCs regardless of whether Ca(2+) was added to the medium, and the effects were inhibited by pre-treatment with CGP46381 (selective GABAB receptor antagonist), pertussis toxin (a Gi/o protein inhibitor), and U73122 (a phospholipase C blocker). GABAB receptors are expressed in HASMCs and regulate the [Ca(2+)]i via a Gi/o-coupled receptor pathway and a phospholipase C activation pathway

Relevância:

10.00% 10.00%

Publicador:

Resumo:

GABAB receptors associate with Gi/o-proteins that regulate voltage-gated Ca(2+) channels and thus the intracellular Ca(2+) concentration ([Ca(2+)]i), there is also reported cross-regulation of phospholipase C. These associations have been studied extensively in the brain and also shown to occur in non-neural cells (e.g. human airway smooth muscle). More recently GABAB receptors have been observed in chick retinal pigment epithelium (RPE). The aims were to investigate whether the GABAB receptor subunits, GABAB1 and GABAB2, are co-expressed in cultured human RPE cells, and then determine if the GABAB receptor similarly regulates the [Ca(2+)]i of RPE cells and if phospholipase C is involved. Human RPE cells were cultured from 5 donor eye cups. Evidence for GABAB1 and GABAB2 mRNAs and proteins in the RPE cell cultures were investigated using real time PCR, western blots and immunofluorescence. The effects of the GABAB receptor agonist baclofen, antagonist CGP46381, a Gi/o-protein inhibitor pertussis toxin, and the phospholipase C inhibitor U73122 on [Ca(2+)]i in cultured human RPE were demonstrated using Fluo-3. Both GABAB1 and GABAB2 mRNA and protein were identified in cell cultures of human RPE; antibody staining was co-localized to the cell membrane and cytoplasm. One-hundred μM baclofen caused a transient increase in the [Ca(2+)]i of RPE cells regardless of whether Ca(2+) was added to the buffer. Baclofen induced increases in the [Ca(2+)]i were attenuated by pre-treatment with CGP46381, pertussis toxin, and U73122. GABAB1 and GABAB2 are co-expressed in cell cultures of human RPE. GABAB receptors in RPE regulate the [Ca(2+)]i via a Gi/o-protein and phospholipase C pathway.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Directional cell migration requires force generation that relies on the coordinated remodeling of interactions with the extracellular matrix (ECM), which is mediated by integrin-based focal adhesions (FAs). Normal FA turnover requires dynamic microtubules, and three members of the diverse group of microtubule plus-end-tracking proteins are principally involved in mediating microtubule interactions with FAs. Microtubules also alter the assembly state of FAs by modulating Rho GTPase signaling, and recent evidence suggests that microtubule-mediated clathrin-dependent and -independent endocytosis regulates FA dynamics. In addition, FA-associated microtubules may provide a polarized microtubule track for localized secretion of matrix metalloproteases (MMPs). Thus, different aspects of the molecular mechanisms by which microtubules control FA turnover in migrating cells are beginning to emerge.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Population genetic studies of freshwater invertebrate taxa in New Zealand and South America are currently few despite the geologically and climatically dynamic histories of these regions. The focus of our study was a comparison of the influence on realized dispersal of 2 closely related nonbiting midges (Chironomidae) of population fragmentation on these separated austral land masses. We used a 734-base pair (bp) fragment of cytochrome c oxidase subunit I (COI) to investigate intraspecific genetic structure in Naonella forsythi Boothroyd in New Zealand and Ferringtonia patagonica Edwards in Patagonia. We proposed hypotheses about their potential dispersal and, hence, expected patterns of genetic structure in these 2 species based on published patterns for the closely related Australian taxon Echinocladius martini Cranston. Genetic structure revealed for both N. forsythi and F. patagonica was characterized by several highly divergent (2.0–10.5%) lineages of late Miocene–Pliocene age within each taxon that were not geographically localized. Many were distributed widely. This pattern differed greatly from population structure in E. martini, which was typified by much greater endemicity of divergent genetic lineages. Nevertheless, diversification of lineages in all 3 taxa appeared to be temporally congruent with the onset of late Miocene glaciations in the southern hemisphere that may have driven fragmentation of suitable habitat, promoting isolation of populations and divergence in allopatry. We argue that differences in realized dispersal post-isolation may be the result of differing availability of suitable habitat in interglacial periods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three thousand liters of water were infiltrated from a 4 m diameter pond to track flow and transport inside fractured carbonates with 20-40 % porosity. Sixteen time-lapse 3D Ground Penetrating Radar (GPR) surveys with repetition intervals between 2 hrs and 5 days monitored the spreading of the water bulb in the subsurface. Based on local travel time shifts between repeated GPR survey pairs, localized changes of volumetric water content can be related to the processes of wetting, saturation and drainage. Deformation bands consisting of thin sub vertical sheets of crushed grains reduce the magnitude of water content changes but enhance flow in sheet parallel direction. This causes an earlier break through across a stratigraphic boundary compared to porous limestone without deformation bands. This experiment shows how time-lapse 3D GPR or 4D GPR can non-invasively track ongoing flow processes in rock-volumes of over 100 m3.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Understanding the progression of prostate cancer to androgen-independence/castrate resistance and development of preclinical testing models are important for developing new prostate cancer therapies. This report describes studies performed 30 years ago, which demonstrate utility and shortfalls of xenografting to preclinical modeling. Methods We subcutaneously implanted male nude mice with small prostate cancer fragments from transurethral resection of the prostate (TURP) from 29 patients. Successful xenografts were passaged into new host mice. They were characterized using histology, immunohistochemistry for marker expression, flow cytometry for ploidy status, and in some cases by electron microscopy and response to testosterone. Two xenografts were karyotyped by G-banding. Results Tissues from 3/29 donors (10%) gave rise to xenografts that were successfully serially passaged in vivo. Two, (UCRU-PR-1, which subsequently was replaced by a mouse fibrosarcoma, and UCRU-PR-2, which combined epithelial and neuroendocrine features) have been described. UCRU-PR-4 line was a poorly differentiated prostatic adenocarcinoma derived from a patient who had undergone estrogen therapy and bilateral castration after his cancer relapsed. Histologically, this comprised diffusely infiltrating small acinar cell carcinoma with more solid aggregates of poorly differentiated adenocarcinoma. The xenografted line showed histology consistent with a poorly differentiated adenocarcinoma and stained positively for prostatic acid phosphatase (PAcP), epithelial membrane antigen (EMA) and the cytokeratin cocktail, CAM5.2, with weak staining for prostate specific antigen (PSA). The line failed to grow in female nude mice. Castration of three male nude mice after xenograft establishment resulted in cessation of growth in one, growth regression in another and transient growth in another, suggesting that some cells had retained androgen sensitivity. The karyotype (from passage 1) was 43–46, XY, dic(1;12)(p11;p11), der(3)t(3:?5)(q13;q13), -5, inv(7)(p15q35) x2, +add(7)(p13), add(8)(p22), add(11)(p14), add(13)(p11), add(20)(p12), -22, +r4[cp8]. Conclusions Xenografts provide a clinically relevant model of prostate cancer, although establishing serially transplantable prostate cancer patient derived xenografts is challenging and requires rigorous characterization and high quality starting material. Xenografting from advanced prostate cancer is more likely to succeed, as xenografting from well differentiated, localized disease has not been achieved in our experience. Strong translational correlations can be demonstrated between the clinical disease state and the xenograft model

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrogels are promising materials for cartilage repair, but the properties required for optimal functional outcomes are not yet known. In this study, we functionalized four materials that are commonly used in cartilage tissue engineering and evaluated them using in vitro cultures. Gelatin, hyaluronic acid, polyethylene glycol, and alginate were functionalized with methacrylic anhydride to make them photocrosslinkable. We found that the responses of encapsulated human chondrocytes were highly dependent on hydrogel type. Gelatin hydrogels supported cell proliferation and the deposition of a glycosaminoglycan rich matrix with significant mechanical functionality. However, cells had a dedifferentiated phenotype, with high expression of collagen type I. Chondrocytes showed the best redifferentiation in hyaluronic acid hydrogels, but the newly formed matrix was highly localized to the pericellular regions, and these gels degraded rapidly. Polyethylene glycol hydrogels, as a bioinert control, did not promote any strong responses. Alginate hydrogels did not support the deposition of new matrix, and the stiffness decreased during culture. The markedly different response of chondrocytes to these four photocrosslinkable hydrogels demonstrates the importance of material properties for chondrogenesis and extracellular matrix production, which are critical for effective cartilage repair.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Functional MRI studies commonly refer to activation patterns as being localized in specific Brodmann areas, referring to Brodmann’s divisions of the human cortex based on cytoarchitectonic boundaries [3]. Typically, Brodmann areas that match regions in the group averaged functional maps are estimated by eye, leading to inaccurate parcellations and significant error. To avoid this limitation, we developed a method using high-dimensional nonlinear registration to project the Brodmann areas onto individual 3D co-registered structural and functional MRI datasets, using an elastic deformation vector field in the cortical parameter space. Based on a sulcal pattern matching approach [11], an N=27 scan single subject atlas (the Colin Holmes atlas [15]) with associated Brodmann areas labeled on its surface, was deformed to match 3D cortical surface models generated from individual subjects’ structural MRIs (sMRIs). The deformed Brodmann areas were used to quantify and localize functional MRI (fMRI) BOLD activation during the performance of the Tower of London task [7].