856 resultados para Load Balancing in Wireless LAN
Resumo:
Com o presente documento pretende-se abordar e identificar os diferentes factores que influenciam directamente a produção e execução de uma escavação subterrânea, com especial relevo sobre a influência exercida pela geotecnia do maciço intersectado. Inicialmente são focados os principais aspectos a ter em conta na caracterização geotécnica de um maciço, seguindo-se uma introdução a diferentes métodos de escavação actuais e metodologias de suporte de uma obra subterrânea, com particular realce para os utilizados em maciços brandos. Depois de tratados estes conceitos, é apresentada uma obra subterrânea em execução que foi acompanhada durante 4 meses para efeitos de desenvolvimento deste estudo. Assim, são abordados neste documento diferentes aspectos construtivos, no que diz respeito à mão-de-obra utilizada, metodologias e técnicas aplicadas, redes técnicas auxiliares instaladas, produções e rendimentos verificados. De seguida e de modo a atestar a importância da caracterização geotécnica ao longo da obra, foi feito um estudo do maciço intersectado, relativamente às descontinuidades que o intersectam, litologia, alteração, e resistência à compressão. Para este último parâmetro foram utilizadas técnicas distintas mas complementares, nomeadamente o ensaio de carga pontual (em laboratório), e o esclerómetro portátil (in situ). Por último, tendo em conta os parâmetros e características presentes e as implicações que uma obra do género acarreta, são propostas de modo sucinto, técnicas alternativas de escavação do maciço cuja viabilidade de implementação seja possível no contexto em questão.
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Automação e Electrónica Industrial
Resumo:
Nas últimas décadas temos assistido a um avanço tecnológico a todos os níveis mas com particular incidência ao nível do hardware e dos dispositivos móveis. Estes tornaram-‐se cada vez mais leves e mais baratos, e transferiram-‐se do escritório para o carro, para os equipamentos e para os utensílios. A quantidade de informação (digital) disponível no meio envolvente aumentou de forma exponencial exigindo uma resposta tecnológica com o intuito de melhorar/facilitar o seu acesso e assimilação. É aqui que surge o conceito de Realidade Aumentada a funcionar como uma ponte de ligação entre o real e o digital convidando a novos modelos de interacção com o utilizador. A sua incorporação visa essencialmente tornar os sistemas mais usáveis diminuindo a carga cognitiva inerente à sua utilização. Este trabalho apresenta um estudo de caso, propondo um modelo para a construção de um Objecto de Aprendizagem com recurso a Realidade Aumentada especificamente para a área da saúde. O problema identificado nesta dissertação procura investigar se a integração de técnicas de Realidade Aumentada combinadas com técnicas multimédia e outros materiais convencionais podem contribuir para uma maior motivação e percepção cooperando para a construção de conhecimento.
Resumo:
A vital role is being played by SCADA Communication for Supervisory Control and Data acquisition (SCADA) Monitoring Ststems. Devices that are designed to operate in safety-critical environments are usually designed to failsafe, but security vulnerabilities could be exploited by an attacker to disable the fail-safe mechanisms. Thus these devices must not onlybe designed for safety but also for security. This paper presents a study of the comparison of different Encryption schemes for securing SCADA Component Communication. The encryption schemes such as Symetric Key Encrypton in Wireless SCADA Environment, Assymmetric-key Encryption to Internet SCADA, and the Cross Crypto Scheme Cipher to secure communication for SCADA are analysed and the outcome is evaluated.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
Dissertação para a obtenção do grau de Mestre em Engenharia Electrotécnica - Ramo de Energia
Resumo:
In spite of the significant amount of scientific work in Wireless Sensor Networks (WSNs), there is a clear lack of effective, feasible and usable WSN system architectures that address both functional and non-functional requirements in an integrated fashion. This poster abstract outlines the EMMON system architecture for large-scale, dense, real-time embedded monitoring. EMMON relies on a hierarchical network architecture together with integrated middleware and command&control mechanisms. It has been designed to use standard commercially– available technologies, while maintaining as much flexibility as possible to meet specific applications’ requirements. The EMMON WSN architecture has been validated through extensive simulation and experimental evaluation, including through a 300+ node test-bed, the largest WSN test-bed in Europe to date
Resumo:
Link quality estimation is a fundamental building block for the design of several different mechanisms and protocols in wireless sensor networks (WSN). A thorough experimental evaluation of link quality estimators (LQEs) is thus mandatory. Several WSN experimental testbeds have been designed ([1–4]) but only [3] and [2] targeted link quality measurements. However, these were exploited for analyzing low-power links characteristics rather than the performance of LQEs. Despite its importance, the experimental performance evaluation of LQEs remains an open problem, mainly due to the difficulty to provide a quantitative evaluation of their accuracy. This motivated us to build a benchmarking testbed for LQE - RadiaLE, which we present here as a demo. It includes (i.) hardware components that represent the WSN under test and (ii.) a software tool for the set up and control of the experiments and also for analyzing the collected data, allowing for LQEs evaluation.
Resumo:
Gravity loads can affect a reinforced concrete structure's response to seismic actions, however, traditional procedures for testing the beam behaviour do not take this effect into consideration. An experimental campaign was carried out in order to assess the influence of the gravity load on RC beam connection to the column subjected to cyclic loading. The experiments included the imposition of a conventional quasi-static test protocol based on the imposition of a reverse cyclic displacement history and of an alternative cyclic test procedure starting from the gravity load effects. The test results are presented, compared and analysed in this paper. The imposition of a cyclic test procedure that included the gravity loads effects on the RC beam ends reproduces the demands on the beams' critical zones more realistically than the traditional procedure. The consideration of the vertical load effects in the test procedure led to an accumulation of negative (hogging) deformation. This phenomenon is sustained with the behaviour of a portal frame system under cyclic loads subject to a significant level of the vertical load, leading to the formation of unidirectional plastic hinges. In addition, the hysteretic behaviour of the RC beam ends tested was simulated numerically using the nonlinear structural analysis software - OpenSees. The beam-column model simulates the global element behaviour very well, as there is a reasonable approximation to the hysteretic loops obtained experimentally. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a micro power light energy harvesting system for indoor environments. Light energy is collected by amorphous silicon photovoltaic (a-Si:H PV) cells, processed by a switched capacitor (SC) voltage doubler circuit with maximum power point tracking (MPPT), and finally stored in a large capacitor. The MPPT fractional open circuit voltage (V-OC) technique is implemented by an asynchronous state machine (ASM) that creates and dynamically adjusts the clock frequency of the step-up SC circuit, matching the input impedance of the SC circuit to the maximum power point condition of the PV cells. The ASM has a separate local power supply to make it robust against load variations. In order to reduce the area occupied by the SC circuit, while maintaining an acceptable efficiency value, the SC circuit uses MOSFET capacitors with a charge sharing scheme for the bottom plate parasitic capacitors. The circuit occupies an area of 0.31 mm(2) in a 130 nm CMOS technology. The system was designed in order to work under realistic indoor light intensities. Experimental results show that the proposed system, using PV cells with an area of 14 cm(2), is capable of starting-up from a 0 V condition, with an irradiance of only 0.32 W/m(2). After starting-up, the system requires an irradiance of only 0.18 W/m(2) (18 mu W/cm(2)) to remain operating. The ASM circuit can operate correctly using a local power supply voltage of 453 mV, dissipating only 0.085 mu W. These values are, to the best of the authors' knowledge, the lowest reported in the literature. The maximum efficiency of the SC converter is 70.3 % for an input power of 48 mu W, which is comparable with reported values from circuits operating at similar power levels.
Resumo:
This paper presents the Genetic Algorithms (GA) as an efficient solution for the Okumura-Hata prediction model tuning on railways communications. A method for modelling the propagation model tuning parameters was presented. The algorithm tuning and validation were based on real networks measurements carried out on four different propagation scenarios and several performance indicators were used. It was shown that the proposed GA is able to produce significant improvements over the original model. The algorithm developed is currently been used on real GSM-R network planning process for an enhanced resources usage.
Resumo:
The ART-WiSe (Architecture for Real-Time communications in Wireless Sensor Networks) framework aims at the design of new communication architectures and mechanisms for time-sensitive Wireless Sensor Networks (WSNs). We adopted a two-tiered architecture where an overlay Wireless Local Area Network (Tier 2) serves as a backbone for a WSN (Tier 1), relying on existing standard communication protocols and commercial-off-the-shell (COTS) technologies – IEEE 802.15.4/ZigBee for Tier 1 and IEEE 802.11 for Tier 2. In this line, a test-bed application is being developed for assessing, validating and demonstrating the ART-WiSe architecture. A pursuit-evasion application was chosen since it fulfils a number of requirements, namely it is feasible and appealing and imposes some stress to the architecture in terms of timeliness. To develop the testbed based on the previously referred technologies, an implementation of the IEEE 8021.5.4/ZigBee protocols is being carried out, since there is no open source available to the community. This paper highlights some relevant aspects of the ART-WiSe architecture, provides some intuition on the protocol stack implementation and presents a general view over the envisaged test-bed application.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Redes de Comunicação e Multimédia
Resumo:
Mobile devices are embedded systems with very limited capacities that need to be considered when developing a client-server application, mainly due to technical, ergonomic and economic implications to the mobile user. With the increasing popularity of mobile computing, many developers have faced problems due to low performance of devices. In this paper, we discuss how to optimize and create client-server applications for in wireless/mobile environments, presenting techniques to improve overall performance.
Resumo:
Maintaining a high level of data security with a low impact on system performance is more challenging in wireless multimedia applications. Protocols that are used for wireless local area network (WLAN) security are known to significantly degrade performance. In this paper, we propose an enhanced security system for a WLAN. Our new design aims to decrease the processing delay and increase both the speed and throughput of the system, thereby making it more efficient for multimedia applications. Our design is based on the idea of offloading computationally intensive encryption and authentication services to the end systems’ CPUs. The security operations are performed by the hosts’ central processor (which is usually a powerful processor) before delivering the data to a wireless card (which usually has a low-performance processor). By adopting this design, we show that both the delay and the jitter are significantly reduced. At the access point, we improve the performance of network processing hardware for real-time cryptographic processing by using a specialized processor implemented with field-programmable gate array technology. Furthermore, we use enhanced techniques to implement the Counter (CTR) Mode with Cipher Block Chaining Message Authentication Code Protocol (CCMP) and the CTR protocol. Our experiments show that it requires timing in the range of 20–40 μs to perform data encryption and authentication on different end-host CPUs (e.g., Intel Core i5, i7, and AMD 6-Core) as compared with 10–50 ms when performed using the wireless card. Furthermore, when compared with the standard WiFi protected access II (WPA2), results show that our proposed security system improved the speed to up to 3.7 times.