507 resultados para Livelihoods
Resumo:
Biogas can be a clean cooking alternative where biomass is the dominant source of cooking energy and where feedstock for anaerobic digestion is available. By substituting woody biomass for energy, biogas may reduce local deforestation. Tanzania has more than 15.6 million goats. Dairy goats of different breeds are found in the mid- to high altitudes of the country. Population density has made firewood increasingly scarce and there are few energy alternatives in mountainous areas such as in the Uluguru Mountains. In Mgeta ward, Morogoro region, introduction of Norwegian dairy goats in the 1980s has improved livelihoods in the area. In this study, goat manure was assessed as feedstock for biogas and as fertilizer. Field work among small-holder dairy goat farmers in Mgeta was conducted to measure daily manure production, and to provide a basic model for prediction of the quantity of droppings which may be collected by farmers. Biogas and fertilizer potential from goat manure was compared to cow and pig manure. Buswell’s formula was used to calculate approximate methane yield. The results show that goat manure from Mgeta can yield 167 l∙kg Volatile Solids-1 (VS). Compared with other substrates approximate methane yield can be ranked as pig > guatemala grass > cow > goat. The average goat of 25 kg in Mgeta leaves 61 kg Total Solids (TS) droppings per year. It was estimated that 15 goats capita-1 would be required to meet the total cooking energy needs of small-holder households in the study location. N:P:K content in goat manure (TS) is 2:1:1, similar to cow and pig manure. Goat droppings had to be macerated to reduce particle size for anaerobic digestion. Biogas from dairy goats could be combined with the year-round irrigated horticulture production in Mgeta. Vegetable gardens in the slope below the digesters could be fertilized by gravitation with the NH4+-rich bioslurry, to save labour and increase yields.
Resumo:
Full Text / Article complet
Resumo:
Developing nations in Africa are not shielded from the pressures of a globalized competitive agricultural marketplace. With an appreciable bulk of her people deriving livelihoods from diverse agricultural enterprises, these nations must respond to important contemporary issues shaping global agriculture. Farmers from such nations, including Ghana, will be able to improve their participation in the competitive local, regional and global agricultural marketplace if the appropriate agricultural technologies and extension information support are available. To achieve this, a new breed of agricultural extension graduates who can respond to current and emerging challenges in agriculture and interface effectively with farmers must be produced through responsive extension education and training. While extension education can produce effective extensionists to hasten agricultural development, budgetary constraints make it difficult for most African governments to successfully and sustainably implement such educational programs. However, public-private partnership (PPP) initiatives offer a way out of this financial dilemma. Beginning in 1993, the Sasakawa Africa Fund for Extension Education (SAFE) worked with the University of Cape Coast (UCC) in Ghana to develop an innovative extension education program through a public private partnership. The program, comprising a BSc. and Diploma components, was designed to respond to the myriad of challenges facing higher agricultural extension education in Ghana. A key practical feature of the curricula is the “Supervised Enterprise Projects” (SEPS), which enable students to work with relevant stakeholders to identify and tackle agricultural problems in farming communities through experiential extension approaches and action research. The SAFE-UCC initiative fulfils important education goals such as: expanding and improving access; ensuring quality and relevance; ensuring funding and mobilizing resources for sustainability; building partnerships and linkages; and promoting international co-operation. The paper discusses the underlying conditions for a successful public private partnership in agricultural and extension education and sheds light on the impacts, lessons learned and challenges.
Resumo:
Full Text / Article complet
Resumo:
Increased occurrence of drought and dry spells during the growing season have resulted in increased interest in protection of tropical water catchment areas. In Mgeta, a water catchment area in the Uluguru Mountains in Tanzania, water used for vegetable and fruit production is provided through canals from the Uluguru South Forest Reserve. The clearing of forest land for cultivation in the steep slopes in the area is causing severe land degradation, which is threatening the water catchment area, livelihoods, and food security of the local communities, as well as the major population centers in the lowlands. In this paper, the economic performance of a traditional cropping-livestock system with East African (EA)-goats and pigs and extensive vegetable production is compared with a more sustainable and environmentally friendly crop-dairy goat production system. A linear programming (LP) crop-livestock model, maximizing farm income considering the environmental constraints in the area was applied for studying the economic performance of dairy goats in the production system. The model was worked out for the rainy and dry seasons and the analysis was conducted for a basic scenario representing the current situation, based on the variability in the 30 years period from 1982-2012, and in a scenario of both lower crop yields and increased crop variability due to climate change. Data obtained from a sample of 60 farmers that were interviewed using a questionnaire was used to develop and parameterize the model. The study found that in the steep slopes of the area, a crop-dairy goat system with extensive use of grass and multipurpose trees (MPTs) would do better than the traditional vegetable gardening with the EA goat production system. The crop-dairy goat system was superior both in the basic and in a climate change scenario since the yield variation of the grass and MPTs system was less affected compared to vegetable crops due to more tree cover and the use of perennial grasses. However, the goat milk production in the area was constrained by inadequate feeding and lack of an appropriate breeding program. Hence, farmers should enhance goat milk production by supplementing with more concentrate feed and by implementing goat-breeding principles. Moreover, policy measures to promote such a development are briefly discussed.
Resumo:
Resumen Los medios de vida de las familias productoras de café de altura están ligados a la finca. Esta relación tan marcada (familia – finca) los hace vulnerables a presiones externas que alteran el funcionamiento cotidiano interno de la unidad productiva. Dentro de estas presiones externas se encuentran los bajos precios, efectos climáticos y plagas en el cafetal. El artículo busca identificar los impactos que ejercen dichas presiones sobre los medios de vida de las familias cafetaleras del cantón de León Cortés, además se intenta mostrar las estrategias que han seguido estas unidades familiares para poder soportar y reponerse a los impactos generados por el clima, las plagas y la inestabilidad de precios del café. Las familias han generado diversas “estrategias de adaptación” en relación con los precios bajos, las organizaciones de productores han buscado nuevas alternativas de comercialización del café, tales como mercado justo y denominación de origen; además, han buscado la generación de un mayor valor agregado mediante la diversificación del producto final enfocado al café de calidad y a la presentación de café molido. Por su parte, las unidades familiares han buscado alternativas de diversificación como la siembra de aguacate. Para combatir las plagas los productores se han enfocado en la introducción de prácticas de conservación de suelos, mejorar sistemas de recolección e introducir sombra en los cultivos; el combate químico también ha sido una estrategia. Por último, la presión del clima no había sido muy tomada en cuenta por los caficultores de la zona, sin embargo, la Tormenta Alma sufrida en el año 2008 hizo que los caficultores comenzaran a pensar en un manejo adecuado y sostenible de la finca que minimice el riesgo climático. Abstract Livelihoods of family coffee growers are strongly determined by their farm. This makes families vulnerable to external shocks that affect the operations in the plot. Within these external shocks are included low prices, pests, and climate effects on the plantation. This paper aims to identify the impact of the aforementioned shocks on family coffee grower livelihoods in the canton of León Cortés. For this purpose, the article shows the strategies followed by families in order to support and recover themselves from the impact which come from climate, pests, and coffee price instability. Families have pursued various “adapting strategies”. Regarding low prices, producers' organizations have sought coffee marketing alternatives, such as fair trade and appellation of origin. Likewise, they work on increasing added value through diversification, improving coffee quality, and by a better packaging of ground coffee. Also, households have sought diversification options, such as avocado production. In order to combat pests, producers have focused on the introduction of soil conservation practices, improvement of collection systems, growing trees on coffee plantations, and chemical control. Finally, climate shocks had not been considered as a real problem by the farmers until the storm Alma affected the region. Nowadays, they think more about sound and sustainable management for their farm.
Resumo:
Introducción Conforme se profundizaban en el Tercer Mundo los efectos funestos de la globalización, empezó a cobrar importancia en enfoque analítico denominado “Sustainable rual livelihoods”(Modos de Vida Rural Sostenibles). Sus proponentes lo definieron en la siguiente manera: ”Un modo de vida rural sostenible comprende las capacidades y bienes, tanto de orden material y social (tangibles e intangibles), que poseen las familias campesinas, así como las actividades que despliegan para desarrollar medios de vida que les permiten subsistir, sortear o recuperarse de adversidades, manteniendo o aumentando sus recursos productivos y sin afectar la base de recursos naturales”…
Resumo:
Water and food are fundamental human rights. However, a number of communities in the world suffer due to a lack of these most basic needs. With few alternative economic opportunities, communities in rural and mountainous Kyrgyzstan have to rely mainly on agriculture for their livelihoods.
Resumo:
Foot-and-mouth disease (FMD), a disease of cloven hooved animals caused by FMD virus (FMDV), is one of the most economically devastating diseases of livestock worldwide. The global burden of disease is borne largely by livestock-keepers in areas of Africa and Asia where the disease is endemic and where many people rely on livestock for their livelihoods and food-security. Yet, there are many gaps in our knowledge of the drivers of FMDV circulation in these settings. In East Africa, FMD epidemiology is complicated by the circulation of multiple FMDV serotypes (distinct antigenic variants) and by the presence of large populations of susceptible wildlife and domestic livestock. The African buffalo (Syncerus caffer) is the only wildlife species with consistent evidence of high levels of FMDV infection, and East Africa contains the largest population of this species globally. To inform FMD control in this region, key questions relate to heterogeneities in FMD prevalence and impacts in different livestock management systems and to the role of wildlife as a potential source of FMDV for livestock. To develop FMD control strategies and make best use of vaccine control options, serotype-specific patterns of circulation need to be characterised. In this study, the impacts and epidemiology of FMD were investigated across a range of traditional livestock-keeping systems in northern Tanzania, including pastoralist, agro-pastoralist and rural smallholder systems. Data were generated through field studies and laboratory analyses between 2010 and 2015. The study involved analysis of existing household survey data and generated serological data from cross-sectional livestock and buffalo samples and longitudinal cattle samples. Serological analyses included non-structural protein ELISAs, serotype-specific solid-phase competitive ELISAs, with optimisation to detect East African FMDV variants, and virus neutralisation testing. Risk factors for FMDV infection and outbreaks were investigated through analysis of cross-sectional serological data in conjunction with a case-control outbreak analysis. A novel Bayesian modeling approach was developed to infer serotype-specific infection history from serological data, and combined with virus isolation data from FMD outbreaks to characterise temporal and spatial patterns of serotype-specific infection. A high seroprevalence of FMD was detected in both northern Tanzanian livestock (69%, [66.5 - 71.4%] in cattle and 48.5%, [45.7-51.3%] in small ruminants) and in buffalo (80.9%, [74.7-86.1%]). Four different serotypes of FMDV (A, O, SAT1 and SAT2) were isolated from livestock. Up to three outbreaks per year were reported by households and active surveillance highlighted up to four serial outbreaks in the same herds within three years. Agro-pastoral and pastoral livestock keepers reported more frequent FMD outbreaks compared to smallholders. Households in all three management systems reported that FMD outbreaks caused significant impacts on milk production and sales, and on animals’ draught power, hence on crop production, with implications for food security and livelihoods. Risk factor analyses showed that older livestock were more likely to be seropositive for FMD (Odds Ratio [OR] 1.4 [1.4-1.5] per extra year) and that cattle (OR 3.3 [2.7-4.0]) were more likely than sheep and goats to be seropositive. Livestock managed by agro-pastoralists (OR 8.1 [2.8-23.6]) or pastoralists (OR 7.1 [2.9-17.6]) were more likely to be seropositive compared to those managed by smallholders. Larger herds (OR: 1.02 [1.01-1.03] per extra bovine) and those that recently acquired new livestock (OR: 5.57 [1.01 – 30.91]) had increased odds of suffering an FMD outbreak. Measures of potential contact with buffalo or with other FMD susceptible wildlife did not increase the likelihood of FMD in livestock in either the cross-sectional serological analysis or case-control outbreak analysis. The Bayesian model was validated to correctly infer from ELISA data the most recent serotype to infect cattle. Consistent with the lack of risk factors related to wildlife contact, temporal and spatial patterns of exposure to specific FMDV serotypes were not tightly linked in cattle and buffalo. In cattle, four serial waves of different FMDV serotypes that swept through southern Kenyan and northern Tanzanian livestock populations over a four-year period dominated infection patterns. In contrast, only two serotypes (SAT1 and SAT2) dominated in buffalo populations. Key conclusions are that FMD has a substantial impact in traditional livestock systems in East Africa. Wildlife does not currently appear to act as an important source of FMDV for East African livestock, and control efforts in the region should initially focus on livestock management and vaccination strategies. A novel modeling approach greatly facilitated the interpretation of serological data and may be a potent epidemiological tool in the African setting. There was a clear temporal pattern of FMDV antigenic dominance across northern Tanzania and southern Kenya. Longer-term research to investigate whether serotype-specific FMDV sweeps are truly predictable, and to shed light on FMD post-infection immunity in animals exposed to serial FMD infections is warranted.
Resumo:
The supply side of the food security engine is the way we farm. The current engine of conventional tillage farming is faltering and needs to be replaced. This presentation will address supply side issues of agriculture to meet future agricultural demands for food and industry using the alternate no-till Conservation Agriculture (CA) paradigm (involving no-till farming with mulch soil cover and diversified cropping) that is able to raise productivity sustainably and efficiently, reduce inputs, regenerate degraded land, minimise soil erosion, and harness the flow of ecosystem services. CA is an ecosystems approach to farming capable of enhancing not only the economic and environmental performance of crop production and land management, but also promotes a mindset change for producing ‘more from less’, the key attitude towards sustainable production intensification. CA is now spreading globally in all continents at an annual rate of 10 Mha and covers some 157 Mha of cropland. Today global agriculture produces enough food to feed three times the current population of 7.21 billion. In 1976, when the world population was 4.15 billion, world food production far exceeded the amount necessary to feed that population. However, our urban and industrialised lifestyle leads to wastage of food of some 30%-40%, as well as waste of enormous amount of energy and protein while transforming crop-based food into animal-derived food; we have a higher proportion of people than ever before who are obese; we continue to degrade our ecosystems including much of our agricultural land of which some 400 Mha is reported to be abandoned due to severe soil and land degradation; and yields of staple cereals appear to have stagnated. These are signs of unsustainability at the structural level in the society, and it is at the structural level, for both supply side and demand side, that we need transformed mind sets about production, consumption and distribution. CA not only provides the possibility of increased crop yields for the low input smallholder farmer, it also provides a pro-poor rural and agricultural development model to support agricultural intensification in an affordable manner. For the high output farmer, it offers greater efficiency (productivity) and profit, resilience and stewardship. For farming anywhere, it addresses the root causes of agricultural land degradation, sub-optimal ecological crop and land potentials or yield ceilings, and poor crop phenotypic expressions or yield gaps. As national economies expand and diversify, more people become integrated into the economy and are able to access food. However, for those whose livelihoods continue to depend on agriculture to feed themselves and the rest of the world population, the challenge is for agriculture to produce the needed food and raw material for industry with minimum harm to the environment and the society, and to produce it with maximum efficiency and resilience against abiotic and biotic stresses, including those arising from climate change. There is growing empirical and scientific evidence worldwide that the future global supplies of food and agricultural raw materials can be assured sustainably at much lower environmental and economic cost by shifting away from conventional tillage-based food and agriculture systems to no-till CA-based food and agriculture systems. To achieve this goal will require effective national and global policy and institutional support (including research and education).
Resumo:
Conservation Agriculture (CA) is mostly referred to in the literature as having three principles at the core of its identity: minimum soil disturbance, permanent organic soil cover and crop diversity. This farming package has been described as suitable to improve yields and livelihoods of smallholders in semi-arid regions of Kenya, which since the colonial period have been heavily subjected to tillage. Our study is based on a qualitative approach that followed local meanings and understandings of soil fertility, rainfall and CA in Ethi and Umande located in the semi-arid region of Laikipia, Kenya. Farm visits, 53 semistructured interviews, informal talks were carried out from April to June 2015. Ethi and Umande locations were part of a resettlement programme after the independence of Kenya that joined together people coming from different farming contexts. Since the 1970–80s, state and NGOs have been promoting several approaches to control erosion and boost soil fertility. In this context, CA has also been promoted preferentially since 2007. Interviewees were well acquainted with soil erosion and the methods to control it. Today, rainfall amount and distribution are identified as major constraints to crop performance. Soil fertility is understood as being under control since farmers use several methods to boost it (inorganic fertilisers, manure, terraces, agroforestry, vegetation barriers). CA is recognised to deliver better yields but it is not able to perform well under severe drought and does not provide yields as high as ‘promised’ in promotion campaigns. Moreover, CA is mainly understood as “cultivating with chemicals”, “kulima na dawa”, in kiswahili. A dominant view is that CA is about minimum tillage and use of pre-emergence herbicides. It is relevant to reflect about what kind of CA is being promoted and if elements like soil cover and crop rotation are given due attention. CA based on these two ideas, minimum tillage and use of herbicides, is hard to stand as a programme to be promoted and up-scaled. Therefore CA appears not to be recognised as a convincing approach to improve the livelihoods in Laikipia.
Resumo:
The seasonal climate drivers of the carbon cy- cle in tropical forests remain poorly known, although these forests account for more carbon assimilation and storage than any other terrestrial ecosystem. Based on a unique combina- tion of seasonal pan-tropical data sets from 89 experimental sites (68 include aboveground wood productivity measure- ments and 35 litter productivity measurements), their asso- ciated canopy photosynthetic capacity (enhanced vegetation index, EVI) and climate, we ask how carbon assimilation and aboveground allocation are related to climate seasonal- ity in tropical forests and how they interact in the seasonal carbon cycle. We found that canopy photosynthetic capacity seasonality responds positively to precipitation when rain- fall is < 2000 mm yr-1 (water-limited forests) and to radia- tion otherwise (light-limited forests). On the other hand, in- dependent of climate limitations, wood productivity and lit- terfall are driven by seasonal variation in precipitation and evapotranspiration, respectively. Consequently, light-limited forests present an asynchronism between canopy photosyn- thetic capacity and wood productivity. First-order control by precipitation likely indicates a decrease in tropical forest pro- ductivity in a drier climate in water-limited forest, and in cur- rent light-limited forest with future rainfall < 2000 mm yr-1.