892 resultados para Linear boundary value control problems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper considers an on-line single machine scheduling problem where the goal is to minimize the makespan. The jobs are partitioned into families and a setup is performed every time the machine starts processing a batch of jobs of the same family. The scheduler is aware of the number of families and knows the setup time of each family, although information about a job only becomes available when that job is released. We give a lower bound on the competitive ratio of any on-line algorithm. Moreover, for the case of two families, we provide an algorithm with a competitive ratio that achieves this lower bound. As the number of families increases, the lower bound approaches 2, and we give a simple algorithm with a competitive ratio of 2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the two-machine flow shop problem with an uncapacitated interstage transporter. The jobs have to be split into batches, and upon completion on the first machine, each batch has to be shipped to the second machine by a transporter. The best known heuristic for the problem is a –approximation algorithm that outputs a two-shipment schedule. We design a –approximation algorithm that finds schedules with at most three shipments, and this ratio cannot be improved, unless schedules with more shipments are created. This improvement is achieved due to a thorough analysis of schedules with two and three shipments by means of linear programming. We formulate problems of finding an optimal schedule with two or three shipments as integer linear programs and develop strongly polynomial algorithms that find solutions to their continuous relaxations with a small number of fractional variables

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the two-machine flow shop problem with an uncapacitated interstage transporter. The jobs have to be split into batches, and upon completion on the first machine, each batch has to be shipped to the second machine by a transporter. The best known heuristic for the problem is a –approximation algorithm that outputs a two-shipment schedule. We design a –approximation algorithm that finds schedules with at most three shipments, and this ratio cannot be improved, unless schedules with more shipments are created. This improvement is achieved due to a thorough analysis of schedules with two and three shipments by means of linear programming. We formulate problems of finding an optimal schedule with two or three shipments as integer linear programs and develop strongly polynomial algorithms that find solutions to their continuous relaxations with a small number of fractional variables.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report presents a case study to be used in courses of negotiation in masters and executive programs. The case studies the topics of the coalitions´ formation and stability from a negotiation analysis perspective, linking it to value creation. Moreover, it illustrates the problem of western companies investing in the Chinese market. The methodology utilized was the construction of a negotiation case, inspired by a real negotiation in the Consumer Electronics industry. Its purpose is to illustrate the value creation problems in coalitions. It is concluded that by maximizing value creation, negotiating parties are more likely to obtain stable coalitions

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nous présentons dans cette thèse des théorèmes de point fixe pour des contractions multivoques définies sur des espaces métriques, et, sur des espaces de jauges munis d’un graphe. Nous illustrons également les applications de ces résultats à des inclusions intégrales et à la théorie des fractales. Cette thèse est composée de quatre articles qui sont présentés dans quatre chapitres. Dans le chapitre 1, nous établissons des résultats de point fixe pour des fonctions multivoques, appelées G-contractions faibles. Celles-ci envoient des points connexes dans des points connexes et contractent la longueur des chemins. Les ensembles de points fixes sont étudiés. La propriété d’invariance homotopique d’existence d’un point fixe est également établie pour une famille de Gcontractions multivoques faibles. Dans le chapitre 2, nous établissons l’existence de solutions pour des systèmes d’inclusions intégrales de Hammerstein sous des conditions de type de monotonie mixte. L’existence de solutions pour des systèmes d’inclusions différentielles avec conditions initiales ou conditions aux limites périodiques est également obtenue. Nos résultats s’appuient sur nos théorèmes de point fixe pour des G-contractions multivoques faibles établis au chapitre 1. Dans le chapitre 3, nous appliquons ces mêmes résultats de point fixe aux systèmes de fonctions itérées assujettis à un graphe orienté. Plus précisément, nous construisons un espace métrique muni d’un graphe G et une G-contraction appropriés. En utilisant les points fixes de cette G-contraction, nous obtenons plus d’information sur les attracteurs de ces systèmes de fonctions itérées. Dans le chapitre 4, nous considérons des contractions multivoques définies sur un espace de jauges muni d’un graphe. Nous prouvons un résultat de point fixe pour des fonctions multivoques qui envoient des points connexes dans des points connexes et qui satisfont une condition de contraction généralisée. Ensuite, nous étudions des systèmes infinis de fonctions itérées assujettis à un graphe orienté (H-IIFS). Nous donnons des conditions assurant l’existence d’un attracteur unique à un H-IIFS. Enfin, nous appliquons notre résultat de point fixe pour des contractions multivoques définies sur un espace de jauges muni d’un graphe pour obtenir plus d’information sur l’attracteur d’un H-IIFS. Plus précisément, nous construisons un espace de jauges muni d’un graphe G et une G-contraction appropriés tels que ses points fixes sont des sous-attracteurs du H-IIFS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One major component of power system operation is generation scheduling. The objective of the work is to develop efficient control strategies to the power scheduling problems through Reinforcement Learning approaches. The three important active power scheduling problems are Unit Commitment, Economic Dispatch and Automatic Generation Control. Numerical solution methods proposed for solution of power scheduling are insufficient in handling large and complex systems. Soft Computing methods like Simulated Annealing, Evolutionary Programming etc., are efficient in handling complex cost functions, but find limitation in handling stochastic data existing in a practical system. Also the learning steps are to be repeated for each load demand which increases the computation time.Reinforcement Learning (RL) is a method of learning through interactions with environment. The main advantage of this approach is it does not require a precise mathematical formulation. It can learn either by interacting with the environment or interacting with a simulation model. Several optimization and control problems have been solved through Reinforcement Learning approach. The application of Reinforcement Learning in the field of Power system has been a few. The objective is to introduce and extend Reinforcement Learning approaches for the active power scheduling problems in an implementable manner. The main objectives can be enumerated as:(i) Evolve Reinforcement Learning based solutions to the Unit Commitment Problem.(ii) Find suitable solution strategies through Reinforcement Learning approach for Economic Dispatch. (iii) Extend the Reinforcement Learning solution to Automatic Generation Control with a different perspective. (iv) Check the suitability of the scheduling solutions to one of the existing power systems.First part of the thesis is concerned with the Reinforcement Learning approach to Unit Commitment problem. Unit Commitment Problem is formulated as a multi stage decision process. Q learning solution is developed to obtain the optimwn commitment schedule. Method of state aggregation is used to formulate an efficient solution considering the minimwn up time I down time constraints. The performance of the algorithms are evaluated for different systems and compared with other stochastic methods like Genetic Algorithm.Second stage of the work is concerned with solving Economic Dispatch problem. A simple and straight forward decision making strategy is first proposed in the Learning Automata algorithm. Then to solve the scheduling task of systems with large number of generating units, the problem is formulated as a multi stage decision making task. The solution obtained is extended in order to incorporate the transmission losses in the system. To make the Reinforcement Learning solution more efficient and to handle continuous state space, a fimction approximation strategy is proposed. The performance of the developed algorithms are tested for several standard test cases. Proposed method is compared with other recent methods like Partition Approach Algorithm, Simulated Annealing etc.As the final step of implementing the active power control loops in power system, Automatic Generation Control is also taken into consideration.Reinforcement Learning has already been applied to solve Automatic Generation Control loop. The RL solution is extended to take up the approach of common frequency for all the interconnected areas, more similar to practical systems. Performance of the RL controller is also compared with that of the conventional integral controller.In order to prove the suitability of the proposed methods to practical systems, second plant ofNeyveli Thennal Power Station (NTPS IT) is taken for case study. The perfonnance of the Reinforcement Learning solution is found to be better than the other existing methods, which provide the promising step towards RL based control schemes for practical power industry.Reinforcement Learning is applied to solve the scheduling problems in the power industry and found to give satisfactory perfonnance. Proposed solution provides a scope for getting more profit as the economic schedule is obtained instantaneously. Since Reinforcement Learning method can take the stochastic cost data obtained time to time from a plant, it gives an implementable method. As a further step, with suitable methods to interface with on line data, economic scheduling can be achieved instantaneously in a generation control center. Also power scheduling of systems with different sources such as hydro, thermal etc. can be looked into and Reinforcement Learning solutions can be achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This presentation discusses the role and purpose of testing in the systems/Software Development Life Cycle. We examine the consequences of the 'cost curve' on defect removal and how agile methods can reduce its effects. We concentrate on Black Box Testing and use Equivalence Partitioning and Boundary Value Analysis to construct the smallest number of test cases, test scenarios necessary for a test plan.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamic optimization methods have become increasingly important over the last years in economics. Within the dynamic optimization techniques employed, optimal control has emerged as the most powerful tool for the theoretical economic analysis. However, there is the need to advance further and take account that many dynamic economic processes are, in addition, dependent on some other parameter different than time. One can think of relaxing the assumption of a representative (homogeneous) agent in macro- and micro-economic applications allowing for heterogeneity among the agents. For instance, the optimal adaptation and diffusion of a new technology over time, may depend on the age of the person that adopted the new technology. Therefore, the economic models must take account of heterogeneity conditions within the dynamic framework. This thesis intends to accomplish two goals. The first goal is to analyze and revise existing environmental policies that focus on defining the optimal management of natural resources over time, by taking account of the heterogeneity of environmental conditions. Thus, the thesis makes a policy orientated contribution in the field of environmental policy by defining the necessary changes to transform an environmental policy based on the assumption of homogeneity into an environmental policy which takes account of heterogeneity. As a result the newly defined environmental policy will be more efficient and likely also politically more acceptable since it is tailored more specifically to the heterogeneous environmental conditions. Additionally to its policy orientated contribution, this thesis aims making a methodological contribution by applying a new optimization technique for solving problems where the control variables depend on two or more arguments --- the so-called two-stage solution approach ---, and by applying a numerical method --- the Escalator Boxcar Train Method --- for solving distributed optimal control problems, i.e., problems where the state variables, in addition to the control variables, depend on two or more arguments. Chapter 2 presents a theoretical framework to determine optimal resource allocation over time for the production of a good by heterogeneous producers, who generate a stock externalit and derives government policies to modify the behavior of competitive producers in order to achieve optimality. Chapter 3 illustrates the method in a more specific context, and integrates the aspects of quality and time, presenting a theoretical model that allows to determine the socially optimal outcome over time and space for the problem of waterlogging in irrigated agricultural production. Chapter 4 of this thesis concentrates on forestry resources and analyses the optimal selective-logging regime of a size-distributed forest.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The characteristics of service independence and flexibility of ATM networks make the control problems of such networks very critical. One of the main challenges in ATM networks is to design traffic control mechanisms that enable both economically efficient use of the network resources and desired quality of service to higher layer applications. Window flow control mechanisms of traditional packet switched networks are not well suited to real time services, at the speeds envisaged for the future networks. In this work, the utilisation of the Probability of Congestion (PC) as a bandwidth decision parameter is presented. The validity of PC utilisation is compared with QOS parameters in buffer-less environments when only the cell loss ratio (CLR) parameter is relevant. The convolution algorithm is a good solution for CAC in ATM networks with small buffers. If the source characteristics are known, the actual CLR can be very well estimated. Furthermore, this estimation is always conservative, allowing the retention of the network performance guarantees. Several experiments have been carried out and investigated to explain the deviation between the proposed method and the simulation. Time parameters for burst length and different buffer sizes have been considered. Experiments to confine the limits of the burst length with respect to the buffer size conclude that a minimum buffer size is necessary to achieve adequate cell contention. Note that propagation delay is a no dismiss limit for long distance and interactive communications, then small buffer must be used in order to minimise delay. Under previous premises, the convolution approach is the most accurate method used in bandwidth allocation. This method gives enough accuracy in both homogeneous and heterogeneous networks. But, the convolution approach has a considerable computation cost and a high number of accumulated calculations. To overcome this drawbacks, a new method of evaluation is analysed: the Enhanced Convolution Approach (ECA). In ECA, traffic is grouped in classes of identical parameters. By using the multinomial distribution function instead of the formula-based convolution, a partial state corresponding to each class of traffic is obtained. Finally, the global state probabilities are evaluated by multi-convolution of the partial results. This method avoids accumulated calculations and saves storage requirements, specially in complex scenarios. Sorting is the dominant factor for the formula-based convolution, whereas cost evaluation is the dominant factor for the enhanced convolution. A set of cut-off mechanisms are introduced to reduce the complexity of the ECA evaluation. The ECA also computes the CLR for each j-class of traffic (CLRj), an expression for the CLRj evaluation is also presented. We can conclude that by combining the ECA method with cut-off mechanisms, utilisation of ECA in real-time CAC environments as a single level scheme is always possible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new blood clotting response test was used to determine the susceptibility, to coumatetralyl and bromadiolone, of laboratory strains of Norway rat from Germany and the UK (Hampshire), and wild rats trapped on farms in Wales (UK) and Westphalia (Germany). Resistance factors were calculated in relation to the CD strain of Norway rat. An outbred strain of wild rats, raised from rats trapped in Germany, was found to be more susceptible to coumatetralyl by a factor of 0.5-0.6 compared to the CD strain. Homozygous and heterozygous animals of a strain of resistant rats from Westphalia were cross-resistant to coumatetralyl and bromadiolone, with a higher resistance factor for bromadiolone than that found in both UK strains. Our results show that the degree of altered susceptibility and resistance varies between strains of wild rat and between resistance foci. Some wild rat strains may be more susceptible than laboratory rat strains. Even in a well-established resistance area, it may be difficult to find infestations with resistance high enough to suspect control problems with bromadiolone, even after decades of use of this compound.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A basic principle in data modelling is to incorporate available a priori information regarding the underlying data generating mechanism into the modelling process. We adopt this principle and consider grey-box radial basis function (RBF) modelling capable of incorporating prior knowledge. Specifically, we show how to explicitly incorporate the two types of prior knowledge: the underlying data generating mechanism exhibits known symmetric property and the underlying process obeys a set of given boundary value constraints. The class of orthogonal least squares regression algorithms can readily be applied to construct parsimonious grey-box RBF models with enhanced generalisation capability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyze a fully discrete spectral method for the numerical solution of the initial- and periodic boundary-value problem for two nonlinear, nonlocal, dispersive wave equations, the Benjamin–Ono and the Intermediate Long Wave equations. The equations are discretized in space by the standard Fourier–Galerkin spectral method and in time by the explicit leap-frog scheme. For the resulting fully discrete, conditionally stable scheme we prove an L2-error bound of spectral accuracy in space and of second-order accuracy in time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel algorithm for solving nonlinear discrete time optimal control problems with model-reality differences is presented. The technique uses dynamic integrated system optimisation and parameter estimation (DISOPE) which achieves the correct optimal solution in spite of deficiencies in the mathematical model employed in the optimisation procedure. A new method for approximating some Jacobian trajectories required by the algorithm is introduced. It is shown that the iterative procedure associated with the algorithm naturally suits applications to batch chemical processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A fundamental principle in data modelling is to incorporate available a priori information regarding the underlying data generating mechanism into the modelling process. We adopt this principle and consider grey-box radial basis function (RBF) modelling capable of incorporating prior knowledge. Specifically, we show how to explicitly incorporate the two types of prior knowledge: (i) the underlying data generating mechanism exhibits known symmetric property, and (ii) the underlying process obeys a set of given boundary value constraints. The class of efficient orthogonal least squares regression algorithms can readily be applied without any modification to construct parsimonious grey-box RBF models with enhanced generalisation capability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyse the Dirichlet problem for the elliptic sine Gordon equation in the upper half plane. We express the solution $q(x,y)$ in terms of a Riemann-Hilbert problem whose jump matrix is uniquely defined by a certain function $b(\la)$, $\la\in\R$, explicitly expressed in terms of the given Dirichlet data $g_0(x)=q(x,0)$ and the unknown Neumann boundary value $g_1(x)=q_y(x,0)$, where $g_0(x)$ and $g_1(x)$ are related via the global relation $\{b(\la)=0$, $\la\geq 0\}$. Furthermore, we show that the latter relation can be used to characterise the Dirichlet to Neumann map, i.e. to express $g_1(x)$ in terms of $g_0(x)$. It appears that this provides the first case that such a map is explicitly characterised for a nonlinear integrable {\em elliptic} PDE, as opposed to an {\em evolution} PDE.