999 resultados para Light trivalent lanthanides


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Boron nitride is a promising material for nanotechnology applications due to its two-dimensional graphene-like, insulating, and highly-resistant structure. Recently it has received a lot of attention as a substrate to grow and isolate graphene as well as for its intrinsic UV lasing response. Similar to carbon, one-dimensional boron nitride nanotubes (BNNTs) have been theoretically predicted and later synthesised. Here we use first principles simulations to unambiguously demonstrate that i) BN nanotubes inherit the highly efficient UV luminescence of hexagonal BN; ii) the application of an external perpendicular field closes the electronic gap keeping the UV lasing with lower yield; iii) defects in BNNTS are responsible for tunable light emission from the UV to the visible controlled by a transverse electric field (TEF). Our present findings pave the road towards optoelectronic applications of BN-nanotube-based devices that are simple to implement because they do not require any special doping or complex growth

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A discussion is presented on the potential for fishery development in the Niger Delta region, considering engineering activities and food production potentials of the freshwater zone and immediate hinterland, the brackishwater mangrove swamps and the estuaries. An examination of current trends in the environment indicates that a possible solution to improved exploitation of the region lies in hydraulic engineering, the manipulation of environmental conditions through varying freshwater and seawater inputs so as to increase aquatic and wetland productivity

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of light duration on the growth and performance of Clarias gariepinus fingerlings were investigated using artificial methods to simulate continuous day length and absolute darkness. The normal day length (12-H Light and 12-H Darkness) served as the control. Among some of the factors affected by the varying photoperiods there were body coloration, feeding efficiency, survival rate and Specific Growth Rate (SGR). There was notably no significant difference between the SGR of the 0-photoperiod culture and the control (P>0.05) but there was significant difference between the 0-photoperiod and the 24-H photoperiod experiment (P<0.05). The haematological profile analysed showed various degrees of changes in the blood parameters of fish cultured under different photoperiods. These changes however, did not show significant differences when subjected to statistical analysis

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advances in optical techniques have enabled many breakthroughs in biology and medicine. However, light scattering by biological tissues remains a great obstacle, restricting the use of optical methods to thin ex vivo sections or superficial layers in vivo. In this thesis, we present two related methods that overcome the optical depth limit—digital time reversal of ultrasound encoded light (digital TRUE) and time reversal of variance-encoded light (TROVE). These two techniques share the same principle of using acousto-optic beacons for time reversal optical focusing within highly scattering media, like biological tissues. Ultrasound, unlike light, is not significantly scattered in soft biological tissues, allowing for ultrasound focusing. In addition, a fraction of the scattered optical wavefront that passes through the ultrasound focus gets frequency-shifted via the acousto-optic effect, essentially creating a virtual source of frequency-shifted light within the tissue. The scattered ultrasound-tagged wavefront can be selectively measured outside the tissue and time-reversed to converge at the location of the ultrasound focus, enabling optical focusing within deep tissues. In digital TRUE, we time reverse ultrasound-tagged light with an optoelectronic time reversal device (the digital optical phase conjugate mirror, DOPC). The use of the DOPC enables high optical gain, allowing for high intensity optical focusing and focal fluorescence imaging in thick tissues at a lateral resolution of 36 µm by 52 µm. The resolution of the TRUE approach is fundamentally limited to that of the wavelength of ultrasound. The ultrasound focus (~ tens of microns wide) usually contains hundreds to thousands of optical modes, such that the scattered wavefront measured is a linear combination of the contributions of all these optical modes. In TROVE, we make use of our ability to digitally record, analyze and manipulate the scattered wavefront to demix the contributions of these spatial modes using variance encoding. In essence, we encode each spatial mode inside the scattering sample with a unique variance, allowing us to computationally derive the time reversal wavefront that corresponds to a single optical mode. In doing so, we uncouple the system resolution from the size of the ultrasound focus, demonstrating optical focusing and imaging between highly diffusing samples at an unprecedented, speckle-scale lateral resolution of ~ 5 µm. Our methods open up the possibility of fully exploiting the prowess and versatility of biomedical optics in deep tissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose an experimentally feasible scheme to generate various types of entangled states of light fields by using beam splitters and single-photon detectors. Two beams of light fields are incident on two beam splitters respectively with each beam being asymmetrically split into two parts in which one part is supposed to be so weak that it contains at most one photon. We let the two weak output modes interfere at a third beam splitter. A conditional joint measurement on both weak output modes may result in an entanglement between the other two output modes. The conditions for the maximal entanglement are discussed based on the concurrence. Several specific examples are also examined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with a theoretical analysis of the reflection and refraction of light at the interface of a bicrystal by use of Maxwell's equations. For a general case, the formulas of Snell's Law and the four Fresnel coefficients for the reflection and refraction of extraordinary light at the interface of a uniaxial bicrystal are derived for the first time, as well as the Brewster angle value. The condition for total reflection is presented and the electromagnetic fields distributions at both sides of a bicrystal are presented when total reflection occurs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The group velocity of the probe light pulse (GVPLP) propagating through an open Lambda-type atomic system with a spontaneously generated coherence is investigated when the weak probe and strong driving light fields have different frequencies. It is found that adjusting the detuning or Rabi frequency of the probe light field can realize switching of the GVPLP from subluminal to superluminal. Changing the relative phase between the probe and driving light. elds or atomic exit and injection rates can lead to GVPLP varying in a wider range, but cannot induce transformation of the property of the GVPLP. The absolute value of the GVPLP always increases with Rabi frequency of the driving light field increasing. For subluminal and superluminal propagation, the system always exhibits the probe absorption, and GVPLP is mainly determined by the slope of the steep dispersion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Incoherent subharmonic light scattering in isotropic media is a new kind of nonlinear light scattering, which involves single input photon and multiple output photons of equal frequency. We investigate theoretically the dependence of the subharmonic scattering intensity on the hyperpolarizability of molecules and the incident intensity using nonlinear optics theory similar to that used for Hyper-Rayleigh scattering and degenerate optical parametric oscillators. It is derived that the subharmonic scattering intensities grow exponentially or superexponentially with the hyperpolarizability of molecules and the incident intensity. (C) 2004 Elsevier B.V. All rights reserved.