998 resultados para Library storage centers -- Catalonia
Resumo:
This study aimed to evaluate the second-generation OptiMal test for malaria diagnosis under various storage conditions. It detected all the positive samples, except for two Plasmodium malariae samples. Further research evaluating diverse environmental conditions are important for ICT test applicability in Brazilian malaria areas.
Resumo:
Fundação para a Ciência e Tecnologia no âmbito de Bolsa de Doutoramento (SFRH/BD/86280/2012)
Resumo:
A hemoterapia moderna baseia-se na utilização correcta dos diversos componentes sanguíneos, associados a um maior controle de qualidade do sangue, o que a torna mais segura e, actualmente, muitos doentes sao beneficiados pois, a transfusão de componentes sanguineos, em situaçoes várias, está na linha da frente na manutenção da vida e em casos extremos, o último recurso que salva vidas. A qualidade e a segurança nas transfusões de sangue são grandes preocupações da área médica, autoridades de saúde e doente1. O sangue obtido pelos Centros de Sangue provem de dadores voluntários, dotados de uma enorme sensibilidade social, que periodicamente assumem uma postura benevola e altruista e consequentemente mantêm os bancos de sangue providos de um produto imprescindivel no tratamento de diversas patologias. O produto final disponível – concentrado de eritrócitos (CE´s), plasma e concentrado plaquetário – tem de assumir um carácter seguro e viável de modo a que os riscos para o doente sejam diminutos2. O controlo de qualidade aplicado a todo o sangue doado realiza provas de conformidade nas unidades com especificações previamente definidas, sendo a hémolise um dos parâmetros importantes na avaliação da qualidade dos concentrados de eritrócitos, pois, pode ocasionar implicações clinicas para o receptor. Para além disso a avaliação da concentração de hemoglobina (Hg) no sangue doado mostra-se um controlo imprescindivel que salvaguarda a qualidade e segurança do componente a transfundir3;4.Até se obter um CE há todo um processo moroso e de responsabilidade vital. Todo o sangue obtido passa por várias etapas fundamentais até à obtenção do componente pretendido (analise, produção e armazenamento). Os CE’s obtidos quando armazenados, num ambiente de refrigeração, têm uma vida útil de 42 dias. Após este período, o sangue deve ser inutilizado por se verificar alterações bioquímicas, biomecânicas, e imunológicas nos CE’s e por consequência a sua instabilidade vital no que ao tratamento de patologias, para as quais este componente está indicado, diz respeito5. Foi realizado um estudo experimental com o objetivo de avaliar a contribuição da Anexina V na apoptose celular nos concentrados de eritrócitos, constatando a degradação dos mesmos ao longo de todo o período de armazenamento e validar o paradigma que a ciência preconiza: “Os CE’s após os 42 dias armazenados, em condições específicas (2 a 6º centígrados), são inviaveis para transfundir”6;7. A avaliação dos níveis de apoptose por citometria de fluxo é geralmente realizada por métodos que utilizam Anexina V como marcador vital, que se associa aos resíduos de fosfatidilserina, externalizados no início do processo apoptótico. A Anexina V é uma proteína humana endógena dependente do ião Ca+2, amplamente distribuída intracelularmente em altas concentrações na placenta e em concentrações mais baixas nos eritrócitos, plaquetas e monócitos. Apresenta como principal característica a capacidade de se ligar à fosfatidilserina, um fosfolipído presente na camada interna da bicamada lipídica, que durante a apoptose celular é translocada para a camada externa da membrana celular. A determinação da Anexina V é normalmente utilizada para verificar se as células são viáveis, apoptóticas ou necróticas por meio de diferenças na integridade da membrana plasmática. Assim, ao conjugar a Anexina V ao FITC (Isotiocianato de fluoresceína) é possível identificar e quantificar as células apoptóticas por citometria de fluxo7. Numa amostra de 15 CE’s, a qual foi induzida a hemólise, verificou-se, por citometria de fluxo, que a viabilidade deste componente se desvanesce ao longo do tempo, confirmando assim que o tratamento, manuseamento e armazenamento do sangue compromete a vitalidade terapeutica deste insubstituivel produto vital.
Resumo:
The development of devices based on heterostructured thin films of biomolecules conveys a huge contribution on biomedical field. However, to achieve high efficiency of these devices, the storage of water molecules into these heterostructures, in order to maintain the biological molecules hydrated, is mandatory. Such hydrated environment may be achieved with lipids molecules which have the ability to rearrange spontaneously into vesicles creating a stable barrier between two aqueous compartments. Yet it is necessary to find conditions that lead to the immobilization of whole vesicles on the heterostructures. In this work, the conditions that govern the deposition of open and closed liposomes of 1.2-dipalmitoyl-sn-Glycero-3-[Phospho-rac-(1-glycerol)] (sodium Salt) (DPPG) onto polyelectrolytes cushions prepared by the layer-by-layer (LbL) method were analyzed. Electronic transitions of DPPG molecules as well as absorption coefficients were obtained by vacuum ultraviolet spectroscopy, while the elemental composition of the heterostructures was characterized by x-ray photoelectron spectroscopy (XPS). The presence of water molecules in the films was inferred by XPS and infrared spectroscopy. Quartz crystal microbalance (QCM) data analysis allowed to conclude that, in certain cases, the DPPG adsorbed amount is dependent of the bilayers number already adsorbed. Moreover, the adsorption kinetics curves of both adsorbed amount and surface roughness allowed to determine the kinetics parameters that are related with adsorption processes namely, electrostatic forces, liposomes diffusion and lipids re-organization on surface. Scaling exponents attained from atomic force microscopy images statistical analysis demonstrate that DPPG vesicles adsorption mechanism is ruled by the diffusion Villain model confirming that adsorption is governed by electrostatic forces. The power spectral density treatment enabled a thorough description of the accessible surface of the samples as well as of its inner structural properties. These outcomes proved that surface roughness influences the adsorption of DPPG liposomes onto surfaces covered by a polyelectrolyte layer. Thus, low roughness was shown to induce liposome rupture creating a lipid bilayer while high roughness allows the adsorption of whole liposomes. In addition, the fraction of open liposomes calculated from the normalized maximum adsorbed amounts decreases with the cushion roughness increase, allowing us to conclude that the surface roughness is a crucial variable that governs the adsorption of open or whole liposomes. This conclusion is fundamental for the development of well-designed sensors based on functional biomolecules incorporated in liposomes. Indeed, LbL films composed of polyelectrolytes and liposomes with and without melanin encapsulated were successfully applied to sensors of olive oil.
Resumo:
A thermal Energy Storage Unit (ESU) could be used to attenuate inherent temperature fluctuations of a cold finger, either from a cryocooler working or due to sudden income heat bursts. An ESU directly coupled to the cold source acts as a thermal buffer temporarily increasing its cooling capacity and providing a better thermal stability of the cold finger (“Power Booster mode”). The energy storage units presented here use an enthalpy reservoir based on the high latent heat of the liquid-vapour transition of neon in the temperature range 38 - 44 K to store up to 900 J, and that uses a 6 liters expansion volume at RT in order to work as a closed system. Experimental results in the power booster mode will be described: in this case, the liquid neon cell was directly coupled to the cold finger of the working cryocooler, its volume (12 cm3) allowing it to store 450 J at around 40 K. 10 W heat bursts were applied, leading to liquid evaporation, with quite reduced temperature changes. The liquid neon reservoir can also work as a temporary cold source to be used after stopping the cryocooler, allowing for a vibration-free environment. In this case the enthalpy reservoir implemented (24 cm3) was linked to the cryocooler cold finger through a gas gap heat switch for thermal coupling/decoupling of the cold finger. We will show that, by controlling the enthalpy reservoir’s pressure, 900 J can be stored at a constant temperature of 40 K as in a triple-point ESU.
Resumo:
Cryocoolers have been progressively replacing the use of the stored cryogens in cryogenic chains used for detector cooling, thanks to their higher and higher reliability. However, the mechanical vibrations, the electromagnetic interferences and the temperature fluctuations inherent to their functioning could reduce the sensor’s sensitivity. In order to minimize this problem, compact thermal energy storage units (ESU) are studied, devices able to store thermal energy without significant temperature increase. These devices can be used as a temporary cold source making it possible to turn the cryocooler OFF providing a proper environment for the sensor. A heat switch is responsible for the thermal decoupling of the ESU from the cryocooler’s temperature that increases when turned OFF. In this work, several prototypes working around 40 K were designed, built and characterized. They consist in a low temperature cell that contains the liquid neon connected to an expansion volume at room temperature for gas storage during the liquid evaporation phase. To turn this system insensitive to the gravity direction, the liquid is retained in the low temperature cell by capillary effect in a porous material. Thanks to pressure regulation of the liquid neon bath, 900 J were stored at 40K. The higher latent heat of the liquid and the inexistence of triple point transitions at 40 K turn the pressure control during the evaporation a versatile and compact alternative to an ESU working at the triple point transitions. A quite compact second prototype ESU directly connected to the cryocooler cold finger was tested as a temperature stabilizer. This device was able to stabilize the cryocooler temperature ((≈ 40K ±1 K) despite sudden heat bursts corresponding to twice the cooling power of the cryocooler. This thesis describes the construction of these devices as well as the tests performed. It is also shown that the thermal model developed to predict the thermal behaviour of these devices, implemented as a software,describes quite well the experimental results. Solutions to improve these devices are also proposed.
Resumo:
Cryocoolers have been progressively replacing the use of the stored cryogens in cryogenic chains used for detector cooling, thanks to their higher and higher reliability. However, the mechanical vibrations, the electromagnetic interferences and the temperature fluctuations inherent to their functioning could reduce the sensor’s sensitivity. In order to minimize this problem, compact thermal energy storage units (ESU) are studied, devices able to store thermal energy without significant temperature increase. These devices can be used as a temporary cold source making it possible to turn the cryocooler OFF providing a proper environment for the sensor. A heat switch is responsible for the thermal decoupling of the ESU from the cryocooler’s temperature that increases when turned OFF. In this work, several prototypes working around 40 K were designed, built and characterized. They consist in a low temperature cell that contains the liquid neon connected to an expansion volume at room temperature for gas storage during the liquid evaporation phase. To turn this system insensitive to the gravity direction, the liquid is retained in the low temperature cell by capillary effect in a porous material. Thanks to pressure regulation of the liquid neon bath, 900 J were stored at 40K. The higher latent heat of the liquid and the inexistence of triple point transitions at 40 K turn the pressure control during the evaporation a versatile and compact alternative to an ESU working at the triple point transitions. A quite compact second prototype ESU directly connected to the cryocooler cold finger was tested as a temperature stabilizer. This device was able to stabilize the cryocooler temperature ((≈ 40K ±1 K) despite sudden heat bursts corresponding to twice the cooling power of the cryocooler. This thesis describes the construction of these devices as well as the tests performed. It is also shown that the thermal model developed to predict the thermal behaviour of these devices,implemented as a software, describes quite well the experimental results. Solutions to improve these devices are also proposed.
Resumo:
INTRODUCTION : In 2011, the Brazilian Ministry of Health rolled out a program for the external quality assessment of rapid human immunodeficiency virus (HIV) tests using the dried tube specimen (DTS) method (EQA-RT/DTS-HIV). Our objective was to evaluate the implementation of this program at 71 voluntary counseling and testing centers (VCTCs) in the Brazilian Legal Amazonian area one year after its introduction. METHODS : Quantitative and qualitative study that analyzed secondary data and interviews with healthcare workers (HCWs) (n=39) and VCTC coordinators (n=32) were performed. The assessment used 18 key indicators to evaluate the three dimensions of the program's logical framework: structure, process, and result. Each indicator was scored from 1-4, and the aggregate results corresponding to the dimensions were expressed as proportions. The results were compared to the perceptions of the HCWs and coordinators regarding the EQA-RT/DTS-HIV program. RESULTS: The aggregate scores for the three dimensions of structure, process, and result were 91.7%, 78.6%, and 95%, respectively. The lowest score in each dimension corresponded to a different indicator: access to Quali-TR online system 39% (structure), registration in Quali-TR online system 38.7% (process), and VCTC completed the full process in the program's first round 63.4% (result). Approximately 36% of the HCWs and 52% of the coordinators reported enhanced trust in the program for its rapid HIV testing performance. CONCLUSIONS: All three program dimensions exhibited satisfactory results (>75%). Nevertheless, the study findings highlight the need to improve certain program components. Additionally, long-term follow-ups is needed to provide a more thorough picture of the process for external quality assessment.
Resumo:
Scarcity of fuels, changes in environmental policy and in society increased the interest in generating electric energy from renewable energy sources (RES) for a sustainable energy supply in the future. The main problem of RES as solar and wind energy, which represent a main pillar of this transition, is that they cannot supply constant power output. This results inter alia in an increased demand of backup technologies as batteries to assure electricity system safety. The diffusion of energy storage technologies is highly dependent on the energy system and transport transition pathways which might lead to a replacement or reconfiguration of embedded socio-technical practices and regimes (by creating new standards or dominant designs, changing regulations, infrastructure and user patterns). The success of this technology is dependent on hardly predictable future technical advances, actor preferences, development of competing technologies and designs, diverging interests of actors, future cost efficiencies, environmental performance, the evolution of market demand and design and evolution of our society.
Resumo:
Based on the report for the unit “Métodos Interactivos de Participação e Decisão A” (Interactive methods of participation and decision A), coordinated by Prof. Lia Maldonado Teles de Vasconcelos and Prof. Nuno Miguel Ribeiro Videira Costa. This unit was provided for the PhD Program in Technology Assessment in 2015/2016.
Resumo:
This study aimed to understand employees’ reactions to organizational politics in Contact Centers. Drawing from a sample of 187 supervisor-employee dyads, we studied the relationship between employees’ perceptions of organizational politics and supervisor-rated task performance and deviance, and mediation effects by authenticity at work and affective commitment. Results indicate that workers tend to react to workplace politics with deviant behavior and worse task performance. We found that the relationship between perceived politics and task performance was mediated by authenticity. The relationship between perceived politics and supervisor-rated deviance was mediated by affective commitment to the organization. Implications for management are discussed.
Resumo:
This paper assesses the feasibility of impregnation/encasement of phase change materials (PCMs) in lightweight aggregates (LWAs). An impregnation process was adopted to carry out the encasement study of two different PCMs in four different LWAs. The leakage of the impregnated/encased PCMs was studied when they were submitted to freeze/thawing and oven drying tests, separately. The results confirmed that, the impregnation/encasement method is effective with respect to the large thermal energy storage density, and can be suitable for applications were PCMs cannot be incorporated directly such as asphalt road pavements.
Resumo:
This work reports the implementation and verification of a new so lver in OpenFOAM® open source computational library, able to cope with integral viscoelastic models based on the integral upper-convected Maxwell model. The code is verified through the comparison of its predictions with analytical solutions and numerical results obtained with the differential upper-convected Maxwell model
Resumo:
The present work focuses on the use of the life cycle assessment (LCA) and life cycle costing (LCC)methodologies to evaluate environmental and economic impacts of polymers and polymer composites materials and products. Initially a literature review is performed in order to assess the scope and limitations of existing LCA and LCC studies on these topics. Then, a case study, based on the production of a water storage glass-fibre reinforced polymer (GFRP) composite storage tank, is presented. The storage tank was evaluated via a LCA/LCC integrated model, a novel way of analysing the life cycle (LC) environmental and economic performances of structural products. The overarching conclusion of the review is that the environmental and economic performances of polymers composites in non-mobile applications are seldom assessed and never in a combined integrated way.
Resumo:
Bacuri (Platonia insignis, Mart.) is one of the most important among Amazonian fruits. However, little is known about its postharvest physiology, such as maturity stages, changes during ambient storage, and respiratory pattern. Fruits were harvested at three maturity stages based on epicarp colour: dark green, light green, and turning (50% yellow), in order to determine colour modification and respiratory pattern during ambient storage (25.2 ºC, 75.1 % RH). Fruit of all maturity stages showed, after three days of harvest, a non-climacteric respiratory pattern, with turning fruit presenting the highest CO2 production rate until the fourth storage day (177.63 mg.CO2.kg-1.h-1). Yellowing increased throughout storage as related to lightness, chromaticity, and hue angle reductions. Turning fruit can be stored at ambient conditions for up to 10 days without any loss in marketability.