894 resultados para Learning. English as an additional language. Electronic games


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quizzes are among the most widely used resources in web-based education due to their many benefits. However, educators need suitable authoring tools that can be used to create reusable quizzes and to enhance existing materials with them. On the other hand, if teachers use Audience Response Systems (ARSs) they can get instant feedback from their students and thereby enhance their instruction. This paper presents an online authoring tool for creating reusable quizzes and enhancing existing learning resources with them, and a web-based ARS that enables teachers to launch the created quizzes and get instant feedback from the class. Both the authoring tool and the ARS were evaluated. The evaluation of the authoring tool showed that educators can effectively enhance existing learning resources in an easy way by creating and adding quizzes using that tool. Besides, the different factors that assure the reusability of the created quizzes are also exposed. Finally, the evaluation of the developed ARS showed an excellent acceptance of the system by teachers and students, and also it indicated that teachers found the system easy to set up and use in their classrooms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents new techniques with relevant improvements added to the primary system presented by our group to the Albayzin 2012 LRE competition, where the use of any additional corpora for training or optimizing the models was forbidden. In this work, we present the incorporation of an additional phonotactic subsystem based on the use of phone log-likelihood ratio features (PLLR) extracted from different phonotactic recognizers that contributes to improve the accuracy of the system in a 21.4% in terms of Cavg (we also present results for the official metric during the evaluation, Fact). We will present how using these features at the phone state level provides significant improvements, when used together with dimensionality reduction techniques, especially PCA. We have also experimented with applying alternative SDC-like configurations on these PLLR features with additional improvements. Also, we will describe some modifications to the MFCC-based acoustic i-vector system which have also contributed to additional improvements. The final fused system outperformed the baseline in 27.4% in Cavg.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La última década ha sido testigo de importantes avances en el campo de la tecnología de reconocimiento de voz. Los sistemas comerciales existentes actualmente poseen la capacidad de reconocer habla continua de múltiples locutores, consiguiendo valores aceptables de error, y sin la necesidad de realizar procedimientos explícitos de adaptación. A pesar del buen momento que vive esta tecnología, el reconocimiento de voz dista de ser un problema resuelto. La mayoría de estos sistemas de reconocimiento se ajustan a dominios particulares y su eficacia depende de manera significativa, entre otros muchos aspectos, de la similitud que exista entre el modelo de lenguaje utilizado y la tarea específica para la cual se está empleando. Esta dependencia cobra aún más importancia en aquellos escenarios en los cuales las propiedades estadísticas del lenguaje varían a lo largo del tiempo, como por ejemplo, en dominios de aplicación que involucren habla espontánea y múltiples temáticas. En los últimos años se ha evidenciado un constante esfuerzo por mejorar los sistemas de reconocimiento para tales dominios. Esto se ha hecho, entre otros muchos enfoques, a través de técnicas automáticas de adaptación. Estas técnicas son aplicadas a sistemas ya existentes, dado que exportar el sistema a una nueva tarea o dominio puede requerir tiempo a la vez que resultar costoso. Las técnicas de adaptación requieren fuentes adicionales de información, y en este sentido, el lenguaje hablado puede aportar algunas de ellas. El habla no sólo transmite un mensaje, también transmite información acerca del contexto en el cual se desarrolla la comunicación hablada (e.g. acerca del tema sobre el cual se está hablando). Por tanto, cuando nos comunicamos a través del habla, es posible identificar los elementos del lenguaje que caracterizan el contexto, y al mismo tiempo, rastrear los cambios que ocurren en estos elementos a lo largo del tiempo. Esta información podría ser capturada y aprovechada por medio de técnicas de recuperación de información (information retrieval) y de aprendizaje de máquina (machine learning). Esto podría permitirnos, dentro del desarrollo de mejores sistemas automáticos de reconocimiento de voz, mejorar la adaptación de modelos del lenguaje a las condiciones del contexto, y por tanto, robustecer al sistema de reconocimiento en dominios con condiciones variables (tales como variaciones potenciales en el vocabulario, el estilo y la temática). En este sentido, la principal contribución de esta Tesis es la propuesta y evaluación de un marco de contextualización motivado por el análisis temático y basado en la adaptación dinámica y no supervisada de modelos de lenguaje para el robustecimiento de un sistema automático de reconocimiento de voz. Esta adaptación toma como base distintos enfoque de los sistemas mencionados (de recuperación de información y aprendizaje de máquina) mediante los cuales buscamos identificar las temáticas sobre las cuales se está hablando en una grabación de audio. Dicha identificación, por lo tanto, permite realizar una adaptación del modelo de lenguaje de acuerdo a las condiciones del contexto. El marco de contextualización propuesto se puede dividir en dos sistemas principales: un sistema de identificación de temática y un sistema de adaptación dinámica de modelos de lenguaje. Esta Tesis puede describirse en detalle desde la perspectiva de las contribuciones particulares realizadas en cada uno de los campos que componen el marco propuesto: _ En lo referente al sistema de identificación de temática, nos hemos enfocado en aportar mejoras a las técnicas de pre-procesamiento de documentos, asimismo en contribuir a la definición de criterios más robustos para la selección de index-terms. – La eficiencia de los sistemas basados tanto en técnicas de recuperación de información como en técnicas de aprendizaje de máquina, y específicamente de aquellos sistemas que particularizan en la tarea de identificación de temática, depende, en gran medida, de los mecanismos de preprocesamiento que se aplican a los documentos. Entre las múltiples operaciones que hacen parte de un esquema de preprocesamiento, la selección adecuada de los términos de indexado (index-terms) es crucial para establecer relaciones semánticas y conceptuales entre los términos y los documentos. Este proceso también puede verse afectado, o bien por una mala elección de stopwords, o bien por la falta de precisión en la definición de reglas de lematización. En este sentido, en este trabajo comparamos y evaluamos diferentes criterios para el preprocesamiento de los documentos, así como también distintas estrategias para la selección de los index-terms. Esto nos permite no sólo reducir el tamaño de la estructura de indexación, sino también mejorar el proceso de identificación de temática. – Uno de los aspectos más importantes en cuanto al rendimiento de los sistemas de identificación de temática es la asignación de diferentes pesos a los términos de acuerdo a su contribución al contenido del documento. En este trabajo evaluamos y proponemos enfoques alternativos a los esquemas tradicionales de ponderado de términos (tales como tf-idf ) que nos permitan mejorar la especificidad de los términos, así como también discriminar mejor las temáticas de los documentos. _ Respecto a la adaptación dinámica de modelos de lenguaje, hemos dividimos el proceso de contextualización en varios pasos. – Para la generación de modelos de lenguaje basados en temática, proponemos dos tipos de enfoques: un enfoque supervisado y un enfoque no supervisado. En el primero de ellos nos basamos en las etiquetas de temática que originalmente acompañan a los documentos del corpus que empleamos. A partir de estas, agrupamos los documentos que forman parte de la misma temática y generamos modelos de lenguaje a partir de dichos grupos. Sin embargo, uno de los objetivos que se persigue en esta Tesis es evaluar si el uso de estas etiquetas para la generación de modelos es óptimo en términos del rendimiento del reconocedor. Por esta razón, nosotros proponemos un segundo enfoque, un enfoque no supervisado, en el cual el objetivo es agrupar, automáticamente, los documentos en clusters temáticos, basándonos en la similaridad semántica existente entre los documentos. Por medio de enfoques de agrupamiento conseguimos mejorar la cohesión conceptual y semántica en cada uno de los clusters, lo que a su vez nos permitió refinar los modelos de lenguaje basados en temática y mejorar el rendimiento del sistema de reconocimiento. – Desarrollamos diversas estrategias para generar un modelo de lenguaje dependiente del contexto. Nuestro objetivo es que este modelo refleje el contexto semántico del habla, i.e. las temáticas más relevantes que se están discutiendo. Este modelo es generado por medio de la interpolación lineal entre aquellos modelos de lenguaje basados en temática que estén relacionados con las temáticas más relevantes. La estimación de los pesos de interpolación está basada principalmente en el resultado del proceso de identificación de temática. – Finalmente, proponemos una metodología para la adaptación dinámica de un modelo de lenguaje general. El proceso de adaptación tiene en cuenta no sólo al modelo dependiente del contexto sino también a la información entregada por el proceso de identificación de temática. El esquema usado para la adaptación es una interpolación lineal entre el modelo general y el modelo dependiente de contexto. Estudiamos también diferentes enfoques para determinar los pesos de interpolación entre ambos modelos. Una vez definida la base teórica de nuestro marco de contextualización, proponemos su aplicación dentro de un sistema automático de reconocimiento de voz. Para esto, nos enfocamos en dos aspectos: la contextualización de los modelos de lenguaje empleados por el sistema y la incorporación de información semántica en el proceso de adaptación basado en temática. En esta Tesis proponemos un marco experimental basado en una arquitectura de reconocimiento en ‘dos etapas’. En la primera etapa, empleamos sistemas basados en técnicas de recuperación de información y aprendizaje de máquina para identificar las temáticas sobre las cuales se habla en una transcripción de un segmento de audio. Esta transcripción es generada por el sistema de reconocimiento empleando un modelo de lenguaje general. De acuerdo con la relevancia de las temáticas que han sido identificadas, se lleva a cabo la adaptación dinámica del modelo de lenguaje. En la segunda etapa de la arquitectura de reconocimiento, usamos este modelo adaptado para realizar de nuevo el reconocimiento del segmento de audio. Para determinar los beneficios del marco de trabajo propuesto, llevamos a cabo la evaluación de cada uno de los sistemas principales previamente mencionados. Esta evaluación es realizada sobre discursos en el dominio de la política usando la base de datos EPPS (European Parliamentary Plenary Sessions - Sesiones Plenarias del Parlamento Europeo) del proyecto europeo TC-STAR. Analizamos distintas métricas acerca del rendimiento de los sistemas y evaluamos las mejoras propuestas con respecto a los sistemas de referencia. ABSTRACT The last decade has witnessed major advances in speech recognition technology. Today’s commercial systems are able to recognize continuous speech from numerous speakers, with acceptable levels of error and without the need for an explicit adaptation procedure. Despite this progress, speech recognition is far from being a solved problem. Most of these systems are adjusted to a particular domain and their efficacy depends significantly, among many other aspects, on the similarity between the language model used and the task that is being addressed. This dependence is even more important in scenarios where the statistical properties of the language fluctuates throughout the time, for example, in application domains involving spontaneous and multitopic speech. Over the last years there has been an increasing effort in enhancing the speech recognition systems for such domains. This has been done, among other approaches, by means of techniques of automatic adaptation. These techniques are applied to the existing systems, specially since exporting the system to a new task or domain may be both time-consuming and expensive. Adaptation techniques require additional sources of information, and the spoken language could provide some of them. It must be considered that speech not only conveys a message, it also provides information on the context in which the spoken communication takes place (e.g. on the subject on which it is being talked about). Therefore, when we communicate through speech, it could be feasible to identify the elements of the language that characterize the context, and at the same time, to track the changes that occur in those elements over time. This information can be extracted and exploited through techniques of information retrieval and machine learning. This allows us, within the development of more robust speech recognition systems, to enhance the adaptation of language models to the conditions of the context, thus strengthening the recognition system for domains under changing conditions (such as potential variations in vocabulary, style and topic). In this sense, the main contribution of this Thesis is the proposal and evaluation of a framework of topic-motivated contextualization based on the dynamic and non-supervised adaptation of language models for the enhancement of an automatic speech recognition system. This adaptation is based on an combined approach (from the perspective of both information retrieval and machine learning fields) whereby we identify the topics that are being discussed in an audio recording. The topic identification, therefore, enables the system to perform an adaptation of the language model according to the contextual conditions. The proposed framework can be divided in two major systems: a topic identification system and a dynamic language model adaptation system. This Thesis can be outlined from the perspective of the particular contributions made in each of the fields that composes the proposed framework: _ Regarding the topic identification system, we have focused on the enhancement of the document preprocessing techniques in addition to contributing in the definition of more robust criteria for the selection of index-terms. – Within both information retrieval and machine learning based approaches, the efficiency of topic identification systems, depends, to a large extent, on the mechanisms of preprocessing applied to the documents. Among the many operations that encloses the preprocessing procedures, an adequate selection of index-terms is critical to establish conceptual and semantic relationships between terms and documents. This process might also be weakened by a poor choice of stopwords or lack of precision in defining stemming rules. In this regard we compare and evaluate different criteria for preprocessing the documents, as well as for improving the selection of the index-terms. This allows us to not only reduce the size of the indexing structure but also to strengthen the topic identification process. – One of the most crucial aspects, in relation to the performance of topic identification systems, is to assign different weights to different terms depending on their contribution to the content of the document. In this sense we evaluate and propose alternative approaches to traditional weighting schemes (such as tf-idf ) that allow us to improve the specificity of terms, and to better identify the topics that are related to documents. _ Regarding the dynamic language model adaptation, we divide the contextualization process into different steps. – We propose supervised and unsupervised approaches for the generation of topic-based language models. The first of them is intended to generate topic-based language models by grouping the documents, in the training set, according to the original topic labels of the corpus. Nevertheless, a goal of this Thesis is to evaluate whether or not the use of these labels to generate language models is optimal in terms of recognition accuracy. For this reason, we propose a second approach, an unsupervised one, in which the objective is to group the data in the training set into automatic topic clusters based on the semantic similarity between the documents. By means of clustering approaches we expect to obtain a more cohesive association of the documents that are related by similar concepts, thus improving the coverage of the topic-based language models and enhancing the performance of the recognition system. – We develop various strategies in order to create a context-dependent language model. Our aim is that this model reflects the semantic context of the current utterance, i.e. the most relevant topics that are being discussed. This model is generated by means of a linear interpolation between the topic-based language models related to the most relevant topics. The estimation of the interpolation weights is based mainly on the outcome of the topic identification process. – Finally, we propose a methodology for the dynamic adaptation of a background language model. The adaptation process takes into account the context-dependent model as well as the information provided by the topic identification process. The scheme used for the adaptation is a linear interpolation between the background model and the context-dependent one. We also study different approaches to determine the interpolation weights used in this adaptation scheme. Once we defined the basis of our topic-motivated contextualization framework, we propose its application into an automatic speech recognition system. We focus on two aspects: the contextualization of the language models used by the system, and the incorporation of semantic-related information into a topic-based adaptation process. To achieve this, we propose an experimental framework based in ‘a two stages’ recognition architecture. In the first stage of the architecture, Information Retrieval and Machine Learning techniques are used to identify the topics in a transcription of an audio segment. This transcription is generated by the recognition system using a background language model. According to the confidence on the topics that have been identified, the dynamic language model adaptation is carried out. In the second stage of the recognition architecture, an adapted language model is used to re-decode the utterance. To test the benefits of the proposed framework, we carry out the evaluation of each of the major systems aforementioned. The evaluation is conducted on speeches of political domain using the EPPS (European Parliamentary Plenary Sessions) database from the European TC-STAR project. We analyse several performance metrics that allow us to compare the improvements of the proposed systems against the baseline ones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O consumidor contemporâneo, inserido em um novo ambiente de comunicação, potencializa suas expressões, capaz de avaliar uma marca ou produto e transmitir sua opinião pelas redes sociais, ou seja, o consumidor expressa suas opiniões e desejos dialogando com seus pares de forma espontânea nas redes sociais on-line. É neste ambiente de participação e interação (ciberespaço) que está nosso objeto de estudo, o boca a boca on-line – a voz do consumidor contemporâneo, também conhecido como uma manifestação informativa pessoal ou uma conversa, a opinion sharing. Proporcionado pelos consumidores nas redes sociais on-line, o boca a boca se fortalece em função das possibilidades de interação, característica da sociedade em rede. Nesse cenário, oobjetivo desta pesquisa é caracterizar o boca a boca on-line como um novo fluxo comunicacional entre consumidores, hoje potencializado pelas novas tecnologias da comunicação, capazes de alterar a percepção da marca e demonstrar o uso, pelas marcas, das redes sociais on-line ainda como um ambiente de comunicação unidirecional. Mediante três casos selecionados por conveniência (dois casos nacionais e um internacional), o corpus de análise de nossa pesquisa se limitou aos 5.084 comentários disponibilizados após publicação de matérias jornalísticas no Portal G1 e nas fanpages (Facebook), ambos relativos aos casos selecionados. Com a Análise de Conteúdo dos posts, identificamos e categorizamos a fala do consumidor contemporâneo, sendo assim possível comprovar que as organizações/marcas se valem da cultura do massivo, não dialogando com seus consumidores, pois utilizam as redes sociais on-line ainda de forma unidirecional, além de não darem a devida atenção ao atual fluxo onde se evidencia a opinião compartilhada dos consumidores da sociedade em rede.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A cross-maze task that can be acquired through either place or response learning was used to examine the hypothesis that posttraining neurochemical manipulation of the hippocampus or caudate-putamen can bias an animal toward the use of a specific memory system. Male Long-Evans rats received four trials per day for 7 days, a probe trial on day 8, further training on days 9–15, and an additional probe trial on day 16. Training occurred in a cross-maze task in which rats started from a consistent start-box (south), and obtained food from a consistent goal-arm (west). On days 4–6 of training, rats received posttraining intrahippocampal (1 μg/0.5 μl) or intracaudate (2 μg/0.5 μl) injections of either glutamate or saline (0.5 μl). On days 8 and 16, a probe trial was given in which rats were placed in a novel start-box (north). Rats selecting the west goal-arm were designated “place” learners, and those selecting the east goal-arm were designated “response” learners. Saline-treated rats predominantly displayed place learning on day 8 and response learning on day 16, indicating a shift in control of learned behavior with extended training. Rats receiving intrahippocampal injections of glutamate predominantly displayed place learning on days 8 and 16, indicating that manipulation of the hippocampus produced a blockade of the shift to response learning. Rats receiving intracaudate injections of glutamate displayed response learning on days 8 and 16, indicating an accelerated shift to response learning. The findings suggest that posttraining intracerebral glutamate infusions can (i) modulate the distinct memory processes mediated by the hippocampus and caudate-putamen and (ii) bias the brain toward the use of a specific memory system to control learned behavior and thereby influence the timing of the switch from the use of cognitive memory to habit learning to guide behavior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper provides an overview of the colloquium's discussion session on natural language understanding, which followed presentations by M. Bates [Bates, M. (1995) Proc. Natl. Acad. Sci. USA 92, 9977-9982] and R. C. Moore [Moore, R. C. (1995) Proc. Natl. Acad. Sci. USA 92, 9983-9988]. The paper reviews the dual role of language processing in providing understanding of the spoken input and an additional source of constraint in the recognition process. To date, language processing has successfully provided understanding but has provided only limited (and computationally expensive) constraint. As a result, most current systems use a loosely coupled, unidirectional interface, such as N-best or a word network, with natural language constraints as a postprocess, to filter or resort the recognizer output. However, the level of discourse context provides significant constraint on what people can talk about and how things can be referred to; when the system becomes an active participant, it can influence this order. But sources of discourse constraint have not been extensively explored, in part because these effects can only be seen by studying systems in the context of their use in interactive problem solving. This paper argues that we need to study interactive systems to understand what kinds of applications are appropriate for the current state of technology and how the technology can move from the laboratory toward real applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reading strategies vary across languages according to orthographic depth - the complexity of the grapheme in relation to phoneme conversion rules - notably at the level of eye movement patterns. We recently demonstrated that a group of early bilinguals, who learned both languages equally under the age of seven, presented a first fixation location (FFL) closer to the beginning of words when reading in German as compared with French. Since German is known to be orthographically more transparent than French, this suggested that different strategies were being engaged depending on the orthographic depth of the used language. Opaque languages induce a global reading strategy, and transparent languages force a local/serial strategy. Thus, pseudo-words were processed using a local strategy in both languages, suggesting that the link between word forms and their lexical representation may also play a role in selecting a specific strategy. In order to test whether corresponding effects appear in late bilinguals with low proficiency in their second language (L2), we present a new study in which we recorded eye movements while two groups of late German-French and French-German bilinguals read aloud isolated French and German words and pseudo-words. Since, a transparent reading strategy is local and serial, with a high number of fixations per stimuli, and the level of the bilingual participants' L2 is low, the impact of language opacity should be observed in L1. We therefore predicted a global reading strategy if the bilinguals' L1 was French (FFL close to the middle of the stimuli with fewer fixations per stimuli) and a local and serial reading strategy if it was German. Thus, the L2 of each group, as well as pseudo-words, should also require a local and serial reading strategy. Our results confirmed these hypotheses, suggesting that global word processing is only achieved by bilinguals with an opaque L1 when reading in an opaque language; the low level in the L2 gives way to a local and serial reading strategy. These findings stress the fact that reading behavior is influenced not only by the linguistic mode but also by top-down factors, such as readers' proficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the author's Representative English literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The lack of standardized tests of central auditory processing disorder (CAPD) in South Africa (SA) led to the formation of a SA CAPD Taskforce, and the interim development of a "low linguistically loaded" CAPD test protocol using test recordings from the 'Tonal and Speech Materials for Auditory Perceptual Assessment Disc 2.0'. This study inferentially compared the performance of 16 SA English first, and 16 SA English second, language adult speakers on this test protocol, and descriptively compared their performances to previously published American normative data. Comparisons between the SA English first and second language speakers showed a poorer right ear performance (p < .05) by the second language speakers on the two-pair dichotic digits test only. Equivalent performances (p < .05) were observed on the left ear performance on the two pair dichotic digits test, and the frequency patterns test, the duration patterns test, the low-pass filtered speech test, the 45% time compressed speech test, the speech masking level difference test, and the consonant vowel consonant (CVC) binaural fusion test. Comparisons between the SA English and the American normative data showed many large differences (up to 37.1% with respect to predicted pass criteria as calculated by mean-2SD cutoffs), with the SA English speakers performing both better and worse depending on the test involved. As a result, the American normative data was not considered appropriate for immediate use as normative data in SA. Instead, the preliminary data provided in this study was recommended as interim normative data for both SA English first and second language adult speakers, until larger scale SA normative data can be obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While the occurrence and management of brainstem tumours in children would not traditionally indicate potential direct structural impact on classical language centres, recent theories have implicated some involvement of the brainstem in a functional language and cognitive neural loop between the cerebellum and the cerebral hemispheres. Thus, the present paper explored the impact of treatment for brainstem tumour on the general and high-level language abilities of six children treated for brainstem tumour, in addition to phonological awareness skills. Group analysis revealed that children treated for brainstem tumour demonstrated intact language and phonological awareness abilities in comparison to an age- and gender-matched control group. Individual analysis revealed only one of six children treated for brainstem tumour revealed evidence of language disturbances, with an additional child demonstrating an isolated mildly reduced score on one phonological awareness task. Language deficits identified in a child treated with a combination of both radiotherapy and chemotherapy were noted in the high-level language area of lexical generation. Findings highlighted that no overt language disturbances were evident in children treated for brainstem tumour. However, further analysis into higher-level language skills in the present study indicated that both general and high-level language abilities require long-term monitoring in this population.