975 resultados para LIDAR


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Radiation schemes in general circulation models currently make a number of simplifications when accounting for clouds, one of the most important being the removal of horizontal inhomogeneity. A new scheme is presented that attempts to account for the neglected inhomogeneity by using two regions of cloud in each vertical level of the model as opposed to one. One of these regions is used to represent the optically thinner cloud in the level, and the other represents the optically thicker cloud. So, along with the clear-sky region, the scheme has three regions in each model level and is referred to as “Tripleclouds.” In addition, the scheme has the capability to represent arbitrary vertical overlap between the three regions in pairs of adjacent levels. This scheme is implemented in the Edwards–Slingo radiation code and tested on 250 h of data from 12 different days. The data are derived from cloud retrievals using radar, lidar, and a microwave radiometer at Chilbolton, southern United Kingdom. When the data are grouped into periods equivalent in size to general circulation model grid boxes, the shortwave plane-parallel albedo bias is found to be 8%, while the corresponding bias is found to be less than 1% using Tripleclouds. Similar results are found for the longwave biases. Tripleclouds is then compared to a more conventional method of accounting for inhomogeneity that multiplies optical depths by a constant scaling factor, and Tripleclouds is seen to improve on this method both in terms of top-of-atmosphere radiative flux biases and internal heating rates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A traditional method of validating the performance of a flood model when remotely sensed data of the flood extent are available is to compare the predicted flood extent to that observed. The performance measure employed often uses areal pattern-matching to assess the degree to which the two extents overlap. Recently, remote sensing of flood extents using synthetic aperture radar (SAR) and airborne scanning laser altimetry (LIDAR) has made more straightforward the synoptic measurement of water surface elevations along flood waterlines, and this has emphasised the possibility of using alternative performance measures based on height. This paper considers the advantages that can accrue from using a performance measure based on waterline elevations rather than one based on areal patterns of wet and dry pixels. The two measures were compared for their ability to estimate flood inundation uncertainty maps from a set of model runs carried out to span the acceptable model parameter range in a GLUE-based analysis. A 1 in 5-year flood on the Thames in 1992 was used as a test event. As is typical for UK floods, only a single SAR image of observed flood extent was available for model calibration and validation. A simple implementation of a two-dimensional flood model (LISFLOOD-FP) was used to generate model flood extents for comparison with that observed. The performance measure based on height differences of corresponding points along the observed and modelled waterlines was found to be significantly more sensitive to the channel friction parameter than the measure based on areal patterns of flood extent. The former was able to restrict the parameter range of acceptable model runs and hence reduce the number of runs necessary to generate an inundation uncertainty map. A result of this was that there was less uncertainty in the final flood risk map. The uncertainty analysis included the effects of uncertainties in the observed flood extent as well as in model parameters. The height-based measure was found to be more sensitive when increased heighting accuracy was achieved by requiring that observed waterline heights varied slowly along the reach. The technique allows for the decomposition of the reach into sections, with different effective channel friction parameters used in different sections, which in this case resulted in lower r.m.s. height differences between observed and modelled waterlines than those achieved by runs using a single friction parameter for the whole reach. However, a validation of the modelled inundation uncertainty using the calibration event showed a significant difference between the uncertainty map and the observed flood extent. While this was true for both measures, the difference was especially significant for the height-based one. This is likely to be due to the conceptually simple flood inundation model and the coarse application resolution employed in this case. The increased sensitivity of the height-based measure may lead to an increased onus being placed on the model developer in the production of a valid model

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Flooding is a major hazard in both rural and urban areas worldwide, but it is in urban areas that the impacts are most severe. An investigation of the ability of high resolution TerraSAR-X Synthetic Aperture Radar (SAR) data to detect flooded regions in urban areas is described. The study uses a TerraSAR-X image of a 1 in 150 year flood near Tewkesbury, UK, in 2007, for which contemporaneous aerial photography exists for validation. The DLR SAR End-To-End simulator (SETES) was used in conjunction with airborne scanning laser altimetry (LiDAR) data to estimate regions of the image in which water would not be visible due to shadow or layover caused by buildings and taller vegetation. A semi-automatic algorithm for the detection of floodwater in urban areas is described, together with its validation using the aerial photographs. 76% of the urban water pixels visible to TerraSAR-X were correctly detected, with an associated false positive rate of 25%. If all urban water pixels were considered, including those in shadow and layover regions, these figures fell to 58% and 19% respectively. The algorithm is aimed at producing urban flood extents with which to calibrate and validate urban flood inundation models, and these findings indicate that TerraSAR-X is capable of providing useful data for this purpose.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper discusses the wide variety of ways in which remotely sensed data are being utilized in river flood inundation modeling. Model parameterization is being aided using airborne LiDAR data to provide topography of the floodplain for use as model bathymetry, and vegetation heights in the floodplain for use in estimating floodplain friction factors. Model calibration and validation are being aided by comparing the flood extent observed in SAR images with the extent predicted by the model. The recent extension of this to the observation of urban flooding using high resolution TerraSAR-X data is described. Possible future research directions are considered.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Flooding is a major hazard in both rural and urban areas worldwide, but it is in urban areas that the impacts are most severe. An investigation of the ability of high resolution TerraSAR-X data to detect flooded regions in urban areas is described. An important application for this would be the calibration and validation of the flood extent predicted by an urban flood inundation model. To date, research on such models has been hampered by lack of suitable distributed validation data. The study uses a 3m resolution TerraSAR-X image of a 1-in-150 year flood near Tewkesbury, UK, in 2007, for which contemporaneous aerial photography exists for validation. The DLR SETES SAR simulator was used in conjunction with airborne LiDAR data to estimate regions of the TerraSAR-X image in which water would not be visible due to radar shadow or layover caused by buildings and taller vegetation, and these regions were masked out in the flood detection process. A semi-automatic algorithm for the detection of floodwater was developed, based on a hybrid approach. Flooding in rural areas adjacent to the urban areas was detected using an active contour model (snake) region-growing algorithm seeded using the un-flooded river channel network, which was applied to the TerraSAR-X image fused with the LiDAR DTM to ensure the smooth variation of heights along the reach. A simpler region-growing approach was used in the urban areas, which was initialized using knowledge of the flood waterline in the rural areas. Seed pixels having low backscatter were identified in the urban areas using supervised classification based on training areas for water taken from the rural flood, and non-water taken from the higher urban areas. Seed pixels were required to have heights less than a spatially-varying height threshold determined from nearby rural waterline heights. Seed pixels were clustered into urban flood regions based on their close proximity, rather than requiring that all pixels in the region should have low backscatter. This approach was taken because it appeared that urban water backscatter values were corrupted in some pixels, perhaps due to contributions from side-lobes of strong reflectors nearby. The TerraSAR-X urban flood extent was validated using the flood extent visible in the aerial photos. It turned out that 76% of the urban water pixels visible to TerraSAR-X were correctly detected, with an associated false positive rate of 25%. If all urban water pixels were considered, including those in shadow and layover regions, these figures fell to 58% and 19% respectively. These findings indicate that TerraSAR-X is capable of providing useful data for the calibration and validation of urban flood inundation models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tidal channel networks play an important role in the intertidal zone, exerting substantial control over the hydrodynamics and sediment transport of the region and hence over the evolution of the salt marshes and tidal flats. The study of the morphodynamics of tidal channels is currently an active area of research, and a number of theories have been proposed which require for their validation measurement of channels over extensive areas. Remotely sensed data provide a suitable means for such channel mapping. The paper describes a technique that may be adapted to extract tidal channels from either aerial photographs or LiDAR data separately, or from both types of data used together in a fusion approach. Application of the technique to channel extraction from LiDAR data has been described previously. However, aerial photographs of intertidal zones are much more commonly available than LiDAR data, and most LiDAR flights now involve acquisition of multispectral images to complement the LiDAR data. In view of this, the paper investigates the use of multispectral data for semiautomatic identification of tidal channels, firstly from only aerial photographs or linescanner data, and secondly from fused linescanner and LiDAR data sets. A multi-level, knowledge-based approach is employed. The algorithm based on aerial photography can achieve a useful channel extraction, though may fail to detect some of the smaller channels, partly because the spectral response of parts of the non-channel areas may be similar to that of the channels. The algorithm for channel extraction from fused LiDAR and spectral data gives an increased accuracy, though only slightly higher than that obtained using LiDAR data alone. The results illustrate the difficulty of developing a fully automated method, and justify the semi-automatic approach adopted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent severe flooding in the UK has highlighted the need for better information on flood risk, increasing the pressure on engineers to enhance the capabilities of computer models for flood prediction. This paper evaluates the benefits to be gained from the use of remotely sensed data to support flood modelling. The remotely sensed data available can be used either to produce high-resolution digital terrain models (DTMs) (light detection and ranging (Lidar) data), or to generate accurate inundation mapping of past flood events (airborne synthetic aperture radar (SAR) data and aerial photography). The paper reports on the modelling of real flood events that occurred at two UK sites on the rivers Severn and Ouse. At these sites a combination of remotely sensed data and recorded hydrographs was available. It is concluded first that light detection and ranging Lidar generated DTMs support the generation of considerably better models and enhance the visualisation of model results and second that flood outlines obtained from airborne SAR or aerial images help develop an appreciation of the hydraulic behaviour of important model components, and facilitate model validation. The need for further research is highlighted by a number of limitations, namely: the difficulties in obtaining an adequate representation of hydraulically important features such as embankment crests and walls; uncertainties in the validation data; and difficulties in extracting flood outlines from airborne SAR images in urban areas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[1] Cloud cover is conventionally estimated from satellite images as the observed fraction of cloudy pixels. Active instruments such as radar and Lidar observe in narrow transects that sample only a small percentage of the area over which the cloud fraction is estimated. As a consequence, the fraction estimate has an associated sampling uncertainty, which usually remains unspecified. This paper extends a Bayesian method of cloud fraction estimation, which also provides an analytical estimate of the sampling error. This method is applied to test the sensitivity of this error to sampling characteristics, such as the number of observed transects and the variability of the underlying cloud field. The dependence of the uncertainty on these characteristics is investigated using synthetic data simulated to have properties closely resembling observations of the spaceborne Lidar NASA-LITE mission. Results suggest that the variance of the cloud fraction is greatest for medium cloud cover and least when conditions are mostly cloudy or clear. However, there is a bias in the estimation, which is greatest around 25% and 75% cloud cover. The sampling uncertainty is also affected by the mean lengths of clouds and of clear intervals; shorter lengths decrease uncertainty, primarily because there are more cloud observations in a transect of a given length. Uncertainty also falls with increasing number of transects. Therefore a sampling strategy aimed at minimizing the uncertainty in transect derived cloud fraction will have to take into account both the cloud and clear sky length distributions as well as the cloud fraction of the observed field. These conclusions have implications for the design of future satellite missions. This paper describes the first integrated methodology for the analytical assessment of sampling uncertainty in cloud fraction observations from forthcoming spaceborne radar and Lidar missions such as NASA's Calipso and CloudSat.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two-dimensional flood inundation modelling is a widely used tool to aid flood risk management. In urban areas, where asset value and population density are greatest, the model spatial resolution required to represent flows through a typical street network (i.e. < 10m) often results in impractical computational cost at the whole city scale. Explicit diffusive storage cell models become very inefficient at such high resolutions, relative to shallow water models, because the stable time step in such schemes scales as a quadratic of resolution. This paper presents the calibration and evaluation of a recently developed new formulation of the LISFLOOD-FP model, where stability is controlled by the Courant–Freidrichs–Levy condition for the shallow water equations, such that, the stable time step instead scales linearly with resolution. The case study used is based on observations during the summer 2007 floods in Tewkesbury, UK. Aerial photography is available for model evaluation on three separate days from the 24th to the 31st of July. The model covered a 3.6 km by 2 km domain and was calibrated using gauge data from high flows during the previous month. The new formulation was benchmarked against the original version of the model at 20 m and 40 m resolutions, demonstrating equally accurate performance given the available validation data but at 67x faster computation time. The July event was then simulated at the 2 m resolution of the available airborne LiDAR DEM. This resulted in a significantly more accurate simulation of the drying dynamics compared to that simulated by the coarse resolution models, although estimates of peak inundation depth were similar.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study of the morphology of tidal networks and their relation to salt marsh vegetation is currently an active area of research, and a number of theories have been developed which require validation using extensive observations. Conventional methods of measuring networks and associated vegetation can be cumbersome and subjective. Recent advances in remote sensing techniques mean that these can now often reduce measurement effort whilst at the same time increasing measurement scale. The status of remote sensing of tidal networks and their relation to vegetation is reviewed. The measurement of network planforms and their associated variables is possible to sufficient resolution using digital aerial photography and airborne scanning laser altimetry (LiDAR), with LiDAR also being able to measure channel depths. A multi-level knowledge-based technique is described to extract networks from LiDAR in a semi-automated fashion. This allows objective and detailed geomorphological information on networks to be obtained over large areas of the inter-tidal zone. It is illustrated using LIDAR data of the River Ems, Germany, the Venice lagoon, and Carnforth Marsh, Morecambe Bay, UK. Examples of geomorphological variables of networks extracted from LiDAR data are given. Associated marsh vegetation can be classified into its component species using airborne hyperspectral and satellite multispectral data. Other potential applications of remote sensing for network studies include determining spatial relationships between networks and vegetation, measuring marsh platform vegetation roughness, in-channel velocities and sediment processes, studying salt pans, and for marsh restoration schemes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Aerosol Direct Radiative Experiment (ADRIEX) took place over the Adriatic and Black Seas during August and September 2004 with the aim of characterizing anthropogenic aerosol in these regions in terms of its physical and optical properties and establishing its impact on radiative balance. Eight successful flights of the UK BAE-146 Facility for Atmospheric Airborne Measurements were completed together with surface-based lidar and AERONET measurements, in conjunction with satellite overpasses. This paper outlines the motivation for the campaign, the methodology and instruments used, describes the synoptic situation and provides an overview of the key results. ADRIEX successfully measured a range of aerosol conditions across the northern Adriatic, Po Valley and Black Sea. Generally two layers of aerosol were found in the vertical: in the flights over the Black Sea and the Po Valley these showed differences in chemical and microphysical properties, whilst over the Adriatic the layers were often more similar. Nitrate aerosol was found to be important in the Po Valley region. The use of new instruments to measure the aerosol chemistry and mixing state and to use this information in determining optical properties is demonstrated. These results are described in much more detail in the subsequent papers of this special issue.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two ongoing projects at ESSC that involve the development of new techniques for extracting information from airborne LiDAR data and combining this information with environmental models will be discussed. The first project in conjunction with Bristol University is aiming to improve 2-D river flood flow models by using remote sensing to provide distributed data for model calibration and validation. Airborne LiDAR can provide such models with a dense and accurate floodplain topography together with vegetation heights for parameterisation of model friction. The vegetation height data can be used to specify a friction factor at each node of a model’s finite element mesh. A LiDAR range image segmenter has been developed which converts a LiDAR image into separate raster maps of surface topography and vegetation height for use in the model. Satellite and airborne SAR data have been used to measure flood extent remotely in order to validate the modelled flood extent. Methods have also been developed for improving the models by decomposing the model’s finite element mesh to reflect floodplain features such as hedges and trees having different frictional properties to their surroundings. Originally developed for rural floodplains, the segmenter is currently being extended to provide DEMs and friction parameter maps for urban floods, by fusing the LiDAR data with digital map data. The second project is concerned with the extraction of tidal channel networks from LiDAR. These networks are important features of the inter-tidal zone, and play a key role in tidal propagation and in the evolution of salt-marshes and tidal flats. The study of their morphology is currently an active area of research, and a number of theories related to networks have been developed which require validation using dense and extensive observations of network forms and cross-sections. The conventional method of measuring networks is cumbersome and subjective, involving manual digitisation of aerial photographs in conjunction with field measurement of channel depths and widths for selected parts of the network. A semi-automatic technique has been developed to extract networks from LiDAR data of the inter-tidal zone. A multi-level knowledge-based approach has been implemented, whereby low level algorithms first extract channel fragments based mainly on image properties then a high level processing stage improves the network using domain knowledge. The approach adopted at low level uses multi-scale edge detection to detect channel edges, then associates adjacent anti-parallel edges together to form channels. The higher level processing includes a channel repair mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The task of assessing the likelihood and extent of coastal flooding is hampered by the lack of detailed information on near-shore bathymetry. This is required as an input for coastal inundation models, and in some cases the variability in the bathymetry can impact the prediction of those areas likely to be affected by flooding in a storm. The constant monitoring and data collection that would be required to characterise the near-shore bathymetry over large coastal areas is impractical, leaving the option of running morphodynamic models to predict the likely bathymetry at any given time. However, if the models are inaccurate the errors may be significant if incorrect bathymetry is used to predict possible flood risks. This project is assessing the use of data assimilation techniques to improve the predictions from a simple model, by rigorously incorporating observations of the bathymetry into the model, to bring the model closer to the actual situation. Currently we are concentrating on Morecambe Bay as a primary study site, as it has a highly dynamic inter-tidal zone, with changes in the course of channels in this zone impacting the likely locations of flooding from storms. We are working with SAR images, LiDAR, and swath bathymetry to give us the observations over a 2.5 year period running from May 2003 – November 2005. We have a LiDAR image of the entire inter-tidal zone for November 2005 to use as validation data. We have implemented a 3D-Var data assimilation scheme, to investigate the improvements in performance of the data assimilation compared to the previous scheme which was based on the optimal interpolation method. We are currently evaluating these different data assimilation techniques, using 22 SAR data observations. We will also include the LiDAR data and swath bathymetry to improve the observational coverage, and investigate the impact of different types of observation on the predictive ability of the model. We are also assessing the ability of the data assimilation scheme to recover the correct bathymetry after storm events, which can dramatically change the bathymetry in a short period of time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Improvements in the resolution of satellite imagery have enabled extraction of water surface elevations at the margins of the flood. Comparison between modelled and observed water surface elevations provides a new means for calibrating and validating flood inundation models, however the uncertainty in this observed data has yet to be addressed. Here a flood inundation model is calibrated using a probabilistic treatment of the observed data. A LiDAR guided snake algorithm is used to determine an outline of a flood event in 2006 on the River Dee, North Wales, UK, using a 12.5m ERS-1 image. Points at approximately 100m intervals along this outline are selected, and the water surface elevation recorded as the LiDAR DEM elevation at each point. With a planar water surface from the gauged upstream to downstream water elevations as an approximation, the water surface elevations at points along this flooded extent are compared to their ‘expected’ value. The pattern of errors between the two show a roughly normal distribution, however when plotted against coordinates there is obvious spatial autocorrelation. The source of this spatial dependency is investigated by comparing errors to the slope gradient and aspect of the LiDAR DEM. A LISFLOOD-FP model of the flood event is set-up to investigate the effect of observed data uncertainty on the calibration of flood inundation models. Multiple simulations are run using different combinations of friction parameters, from which the optimum parameter set will be selected. For each simulation a T-test is used to quantify the fit between modelled and observed water surface elevations. The points chosen for use in this T-test are selected based on their error. The criteria for selection enables evaluation of the sensitivity of the choice of optimum parameter set to uncertainty in the observed data. This work explores the observed data in detail and highlights possible causes of error. The identification of significant error (RMSE = 0.8m) between approximate expected and actual observed elevations from the remotely sensed data emphasises the limitations of using this data in a deterministic manner within the calibration process. These limitations are addressed by developing a new probabilistic approach to using the observed data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Satellite observed data for flood events have been used to calibrate and validate flood inundation models, providing valuable information on the spatial extent of the flood. Improvements in the resolution of this satellite imagery have enabled indirect remote sensing of water levels by using an underlying LiDAR DEM to extract the water surface elevation at the flood margin. Further to comparison of the spatial extent, this now allows for direct comparison between modelled and observed water surface elevations. Using a 12.5m ERS-1 image of a flood event in 2006 on the River Dee, North Wales, UK, both of these data types are extracted and each assessed for their value in the calibration of flood inundation models. A LiDAR guided snake algorithm is used to extract an outline of the flood from the satellite image. From the extracted outline a binary grid of wet / dry cells is created at the same resolution as the model, using this the spatial extent of the modelled and observed flood can be compared using a measure of fit between the two binary patterns of flooding. Water heights are extracted using points at intervals of approximately 100m along the extracted outline, and the students T-test is used to compare modelled and observed water surface elevations. A LISFLOOD-FP model of the catchment is set up using LiDAR topographic data resampled to the 12.5m resolution of the satellite image, and calibration of the friction parameter in the model is undertaken using each of the two approaches. Comparison between the two approaches highlights the sensitivity of the spatial measure of fit to uncertainty in the observed data and the potential drawbacks of using the spatial extent when parts of the flood are contained by the topography.