936 resultados para LATERAL GENICULATE-NUCLEUS
Resumo:
The electronic energy subbands and minigaps in lateral superlattices (LSLs) have been calculated by the plane-wave expansion method. The effect of the lateral modulation on the critical well width at which an indirect-direct (X-Gamma) optical transition occurs in the LSLs is investigated. Our theoretical results are in agreement with the available experimental data. Totally at variance with the previous variation calculational results, the minigaps between the first two subbands in LSLs, as functions of the modulation period, exhibit a maximum value at a specific length and disappear on decreasing the modulation period further. The modulations of several types of lateral potential are also evaluated; the indication is that the out-of-phase modulation on either side of the wells is the strongest while the in-phase modulation is the weakest. Our calculations also show that the effect of the difference between the effective masses of the electrons in the different materials on the subband structures is significant.
Resumo:
The magneto-transport properties of a narrow quantum waveguide with lateral multibarrier modulation are investigated theoretically. It is found that the magnetoconductance as a function of Fermi energy or magnetic field exhibits square-wave-like oscillations. In the presence of magnetic field, the edge states are formed near each barrier and the boundaries. Therefore, the number of edge states increases with the number of lateral barriers, leading to the increase of the propagating modes. On the other hand, owing to the tunneling effect a pair of edge states around the barrier region with opposite moving directions may be coupled and formed a circulating localized state, leading to the quenching of the related propagating states. The resulting dispersion relation exhibits oscillation structures superimposed on the bulk Landau levels. These novel conductance characteristics may provide potential applications to the fabrication of new quantum devices.
Resumo:
The electronic state of a two-dimensional electron system (2DES) in the presence of a perpendicular uniform magnetic field and a lateral superlattice (LS) is investigated theoretically. A comparative study is made between a LS induced by a spatial electrostatic potential modulation (referred to as a PMLS) and that induced by a spatial magnetic-field modulation (referred ro asa MMLS). By utilizing a finite-temperature self-consistent Hartree-Fock approximation scheme; the dependence of the electronic state on different system parameters (e.g., the modulation period, the modulation strength, the effective electron-electron interaction strength, the averaged electron density, and the system temperature) is studied in detail. The inclusion of exchange effect is found to bring qualitative changes to the electronic state of a PMLS, leading generally to a nonuniform spin splitting, and consequently the behavior of the electronic state becomes similar to that of a MMLS. The Landau-level coupling is taken into account, and is found to introduce some interesting features not observed before. It is also found that, even in the regime of intermediate modulation strength, the density dependence of the spin splitting of energy levels, either for a PMLS or a MMLS, can be qualitatively understood within the picture of a 2DES in a perpendicular magnetic field with the modulation viewed as a perturbation. [S0163-1829(97)02248-0].
Resumo:
We present lateral intersubband photocurrent (PC) study on self-assembled InAs/InAIAs/InP(001) nanostructures in normal incidence. With the help of interband excitation, a broad PC signal has been observed in the photon energy range of 150-630 meV arising from the bound-to-continuum intersubband absorption in the InAs nanostructures. The large linewidth of the intersubband PC signal is due to the size inhomogeneity of the nanostructures. With the increase of the interband excitation the intersubband PC signal firstly increases with a redshift of PC peak and reaches its maximum, then decreases with no peak shift. The increase and redshift of the PC signal at low excitation level can be explained by the state filling effect. However, the decrease of PC signal at high excitation level may be due to the change of the mobility and lifetime of the electrons. The intersubband PC signal decreases when the temperature is increased, which can be explained by the decrease of the mobility and lifetime of the electrons and the thermal escape of electrons.
Resumo:
Submitted by 阎军 (yanj@red.semi.ac.cn) on 2010-06-07T01:33:41Z No. of bitstreams: 1 ApplPhysLett_96_213505.pdf: 1153920 bytes, checksum: 69931d8deb797813dd478b5dd0e292c0 (MD5)
Resumo:
We demonstrate room temperature operation of photonic-crystal distributed-feedback quantum cascade lasers emitting at 4.7 mu m. A rectangular photonic crystal lattice perpendicular to the cleaved facet was defined using holographic lithography. The anticrossing of the index- and Bragg-guided dispersions of rectangular lattice forms the band-edge mode with extended mode volume and reduced group velocity. Utilizing this coupling mechanism, single mode operation with a near-diffractive-limited divergence angle of 12 degrees is obtained for 33 mu m wide devices in a temperature range of 85-300 K. The reduced threshold current densities and improved heat dissipation management contribute to the realization of devices' room temperature operation.
Resumo:
It was theoretically predicted that when a beam of light travels through a thin slab of optically denser medium in the air, the emerging beam from the slab will suffer a lateral displacement that is different from the prediction of geometrical optics, that is, the Snell's law of refraction and can be zero and negative as well as positive. These phenomena have been directly observed in microwave experiments in which large angles of incidence are chosen for the purpose of obtaining negative lateral displacements. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
It is found that when a light beam travels through a slab of optically denser dielectric medium in air, the lateral shift of the transmitted beam can be negative. This is a novel phenomenon that is reversed in comparison with the geometrical optic prediction according to Snell's law of refraction. A Gaussian-shaped beam is analyzed in the paraxial approximation, and a comparison with numerical simulations is made. Finally, an explanation for the negativity of the lateral shift is suggested, in terms of the interaction of boundary effects of the slab's two interfaces with air.
Resumo:
It is theoretically shown that the simultaneously large positive and negative lateral displacements will appear when the resonant condition is satisfied for a TE-polarized light beam reflected from the total internal reflection configuration with a weakly absorbing dielectric film. Appearance of the enhanced negative lateral displacement is relative to the incidence angle, absorption of the thin Elm and its thickness. If we select an appropriate weakly absorbing dielectric film and its thickness, the simultaneously enhanced positive and negative lateral displacements will appear at different resonant angles. These phenomena may lead to convenient measurements and interesting applications in optical devices.
Resumo:
We investigate the large negative lateral displacements of TE polarized light beams reflected from or transmitted through an active slab surrounded by transparent medium. The large negative displacements can be achieved when the incidence angle of the beam is less than but close to the critical angle for total reflection. It is also shown that both the reflectivity and transmissivity of the beam that correspond to the large negative displacements can be enhanced by active medium. These phenomena may lead to convenient measurements and interesting applications in optical devices. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The optical absorption of a GaAs/AlGaAs quantum dot superlattice nanoring (QDSLNR) under a lateral dc electric field and with magnetic flux threading the ring is investigated. This structure and configuration provides a unique opportunity to study the optical response of a superlattice under an inhomogeneous electric field, which is not easily realized for general quantum well superlattices (QWSLs) but naturally realized for QDSLNRs under a homogeneous lateral electric field. It has been shown that a lateral dc electric field gives rise to a substantial change of the optical absorption spectra. Under a low field, the excitonic optical absorption is dominated by a 1s exciton. And with the electric field increasing, the optical absorption undergoes a transition from 1s excitonic absorption to 0 excitronic WSL absorption. (The number of 0, and -1 and +1 below are WSLs index.) The -1 and the +1 WSLs corresponding to the maximum effective field can also be identified. Due to the inhomogeneity of the electric field, the peaks of the -1 and the +1 WSLs are diminished and between them there exist rich and complicated structures. This is in contrast to the general QWSLs under a homogenous electric field. The complicated structures can be understood by considering the inhomogeneity of the electric field along the ring, which results in the nearest-neighbor transition, the next-nearest-neighbor transition, etc., have a different value repectively, at different sites along the ring. This may give rise to multiple WSLs. We have also shown that the line shape of the optical absorption is not sensitive to the threading magnetic flux. The threading magnetic flux only gives rise to a slight diamagnetic shift. Thus the enhancement of the sensitivity to the flux allowing for observation of the excitonic Aharanov-Bohm effect in the plain nanoring is not expected in QDSLNRs.
Resumo:
It is reported that when a light beam travels through a slab of left-handed medium in the air, the lateral shift of the transmitted beam can be negative as well as positive. The necessary condition for the lateral shift to be positive is given. The validity of the stationary-phase approach is demonstrated by numerical simulations for a Gaussian-shaped beam. A restriction to the slab's thickness is provided that is necessary for the beam to retain its profile in the traveling. It is shown that the lateral shift of the reflected beam is equal to that of the transmitted beam in the symmetric configuration.