983 resultados para L-NAME-induced hypertension
Resumo:
OBJECTIVES: We investigated the influence of angiotensin receptor blockade and angiotensin-converting enzyme inhibition on stress-induced platelet activation in hypertensive patients. Secondary aims were effects on inflammation, coagulation, and endothelial function. METHODS: Following a 4-week placebo period, 25 hypertensive patients entered a double-blind, crossover study comparing enalapril (20 mg once daily) and losartan (100 mg once daily) treatment (each for 8 weeks). Patients were studied at rest and after a standardized exercise test. RESULTS: Mean arterial pressure was reduced from 119 ± 2 to 104 ± 2 (enalapril) and 106 ± 2 (losartan) mmHg (both P <0.001). Plasma angiotensin II decreased from 2.4 ± 0.4 to 0.5 ± 0.1 pmol/l with enalapril, and increased to 7.2 ± 1.3 pmol/l with losartan (both P <0.001). Exercise-evoked platelet activation, as evidenced by increased numbers of P-selectin-positive platelets (P <0.01), elevated circulating platelet-platelet aggregates (P <0.01) and soluble P-selectin levels (P <0.001), and increased platelet responsiveness to adenosine diphosphate and thrombin (both P <0.05). Neither drug influenced these markers of platelet activation at rest or following exercise. Markers of inflammation (high-sensitivity C reactive protein, interleukin-6, tissue necrosis factor-α), coagulation (tissue plasminogen activator antigen, prothrombin fragment F1+2), and endothelial function (von Willebrand factor, soluble vascular cellular adhesion molecule-1, and intercellular adhesion molecule-1) were also uninfluenced by treatment. CONCLUSION: Enalapril and losartan failed to reduce platelet activity both at rest and during exercise in hypertensive patients. Markers of inflammation, coagulation, and endothelial function were similarly unaffected. Inhibition of the renin-angiotensin system promotes its beneficial effects in hypertension through mechanisms other than platelet inhibition.
Resumo:
Rapport de synthèse : Implication des canaux Ca2+ de type L et des canaux KATP dans la protection induite par pacing dans un modèle de coeur embryonnaire soumis à l'anoxieréoxygénation. Contexte et but : le canal Ca2+ de type L, les canaux K+ du sarcolemme (sarcKatp) et de la mitochondrie (mitoKatp) interviennent dans le préconditionnement ischémique ou pharmacologique du myocarde. La présente étude cherche à déterminer dans quelle mesure ces canaux peuvent aussi jouer un rôle dans la cardioprotection induite par pacing. Méthodes :des coeurs d'embryons de poulet âgés de 4 jours ont été soumis in ovo à un pacing durant 12 heures, en pratiquant une stimulation électrique ventriculaire asynchrone intermittente à 110% de la fréquence cardiaque intrinsèque. Les coeurs contrôles (sham) et les coeurs stimulés ont ensuite été soumis in vitro à une période d'anoxie de 30 minutes, suivie d'une réoxygénation de 60 minutes. Les coeurs ont été exposés à l'agoniste du canal Ca2+ de type L (Bay-K-8644, BAY-K) ou à son bloqueur (vérapamil, VERAP), à l'antagoniste non sélectif des canaux KATP (glibenclamide, GLIB), ainsi qu'à l'agoniste du canal mitoKATP (diazoxide, DIAZO), ou à son antagoniste (5-hydroxydécanoate, 5-HD). L'électrocardiogramme, le délai électro-mécanique (DEM) reflétant le couplage excitation-contraction, ainsi que la contractilité myocardique ont été systématiquement déterminés pendant l'anoxieréoxygénation. Résultats : en normoxie, la fréquence cardiaque, l'intervalle QT, la conduction atrioventriculaire, le DEM et le raccourcissement ventriculaires étaient identiques dans les coeurs sham et les coeurs stimulés. Par contre, au cours de la réoxygénation post-anoxique, les arythmies cessaient plus précocément et le DEM ventriculaire retrouvait plus rapidement son niveau initial dans les coeurs stimulés, comparés aux sham. Dans les coeurs sham, BAY-K (mais pas le VERAP), DIAZO (mais pas le 5HD) ou GLIB accéléraient la récupération du DEM ventriculaire, reproduisant ainsi la protection induite par le pacing. En revanche, aucun de ces agents n'affectait la récupération des cceurs stimulés. Conclusion : un pacing ventriculaire chronique et intermittent délivré à une fréquence quasi physiologique améliore la tolérance myocardique à une anoxie-réoxygénation ultérieure. L'approche pharmacologique amontré qu'une activation discrète du canal Ca2+ de type L, une inhibition du canal sarcKATP et/ou une ouverture du canal mitoKATP peuvent contribuer à la cardioprotection induite par le pacing.
Resumo:
AIMS: Connexins (Cxs) play a role in the contractility of the aorta wall. We investigated how connexins of the endothelial cells (ECs; Cx37, Cx40) and smooth muscle cells (SMCs; Cx43, Cx45) of the aorta change during renin-dependent and -independent hypertension. METHODS AND RESULTS: We subjected both wild-type (WT) mice and mice lacking Cx40 (Cx40(-/-)), to either a two-kidney, one-clip procedure or to N-nitro-l-arginine-methyl-ester treatment, which induce renin-dependent and -independent hypertension, respectively. All hypertensive mice featured a thickened aortic wall, increased levels of Cx37 and Cx45 in SMC, and of Cx40 in EC (except in Cx40(-/-) mice). Cx43 was up-regulated, with no effect on its S368 phosphorylation, only in the SMCs of renin-dependent models of hypertension. Blockade of the renin-angiotensin system of Cx40(-/-) mice normalized blood pressure and prevented both aortic thickening and Cx alterations. Ex vivo exposure of WT aortas, carotids, and mesenteric arteries to physiologically relevant levels of angiotensin II (AngII) increased the levels of Cx43, but not of other Cx. In the aortic SMC line of A7r5 cells, AngII activated kinase-dependent pathways and induced binding of the nuclear factor-kappa B (NF-kappaB) to the Cx43 gene promoter, increasing Cx43 expression. CONCLUSION: In both large and small arteries, hypertension differently regulates Cx expression in SMC and EC layers. Cx43 is selectively increased in renin-dependent hypertension via an AngII activation of the extracellular signal-regulated kinase and NF-kappaB pathways.
Resumo:
The active fragment derived from factor XII (factor XIIf) was purified from human plasma and administered intravenously to normotensive conscious rats. Factor XIIf-mediated hypotension was dose-dependent and augmented by pretreatment with captopril, an inhibitor of the angiotensin I- and bradykinin-processing enzyme. In contrast, factor XIIf-induced hypotension was not enhanced by blockade of the renin-angiotensin system by saralasin, a competitive antagonist of angiotensin II at the vascular receptor level. These results suggest that factor XIIf-mediated hypotension is due to the formation of bradykinin.
Resumo:
We report two cases of beta-thalassemia-induced osteoporosis. A man and a woman presented an osteoporosis at the densitometry and were treated with bisphoshonate iv. All the studies analysed the efficacity of bisphosphonate, in particular zoledronate seems to be effective. Concerning the pathogenesis, the RANK-RANK-Ligand and OPG play a major role in bone-resorption and seem to be the principal implicated mechanism for the development of osteoporosis in BTM. At the moment there is no study evaluating the efficacity of denosumab in the BTM.
Resumo:
Hypertension is a frequent finding in patients with chronic kidney disease. Whether primary or secondary to renal disease, hypertension remains an important risk factory for the progression of chronic kidney disease and the occurrence of cardiovascular events. The objective of this paper is to review different treatment strategies in hypertensive CKD patients, with the exclusion of patients with renal replacement therapy such as dialysis or renal transplantation.
Resumo:
Sixteen patients with refractory hypertension were submitted to vigorous sodium depletion while cardiovascular homeostasis was monitored with measurements of hormonal and hemodynamic parameters and repeat saralasin tests. This regimen resulted in a negative sodium balance by an average of 300 mEq. The loss of sodium closely correlated to the decrease of body weight (r = 0.70, p less than 0.005). Blood pressure (BP) decreased from 176/166 +/- 8/3 to 155/109 +/-6/3 mm Hg. There was a significant correlation between percent increments in plasma renin activity (PRA) and the rise in plasma norepinephrine (r = 0.68, p less than 0.05) and a close negative correlation between percent increase in PRA and the ratio of fall in mean blood pressure (MAP) per unit of weight loss (r = -0.73, p less than 0.005). Thus, patients with the least percent increase in PRA demonstrated the greatest fall in BP per unit of weight loss, indicating that relative rather than absolute elevation of renin may be the factor limiting antihypertensive efficacy of sodium depletion. Sodium depletion induced increase in peripheral resistance and decrease in cardiac output, both mostly attributable to relative hyperreninemia. Indeed, the adverse hemodynamic changes were reversed by angiotensin inhibition, during which BP normalized. It is concluded that vigorous sodium depletion complemented by angiotensin blockade or suppression with sympatholytic agents improves management of otherwise refractory hypertension.
Resumo:
The prevalence of resistant hypertension ranges between 5-30%. Patients with resistant hypertension are at increased risk of cardiovascular events. Radiofrequency renal denervation is a recent and promising technique that can be used in the setting of resistant hypertension. However, long-term safety and efficacy data are lacking and evidence to use this procedure outside the strict setting of resistant hypertension is missing. The aim of the article is to propose a common work-up for nephrologists, hypertensiologists, cardiologists and interventional radiologists in order to avoid inappropriate selection of patients and a possible misuse of this procedure.
Resumo:
The mouse remains the animal of choice in transgenic experiments, creating a need for methods of evaluating the physiology of genetically modified animals. We have established and characterized two murine models of renovascular hypertension known as the two-kidney, one clip and one-kidney, one clip models. The appropriate size of the clip lumen needed to induce high blood pressure was determined to be 0.12 mm. Clips with a lumen of 0.11 mm induced a high percentage of renal infarction, and clips with a 0.13-mm opening did not produce hypertension. Four weeks after clipping, two-kidney, one clip hypertensive mice exhibited blood pressure approximately 20 mm Hg higher than their sham-operated controls. After a similar period, this increase reached almost 35 mm Hg in the one-kidney, one clip model. Depending on the model, mice develop either renin-dependent or renin-independent hypertension. Both models are characterized by the development of cardiovascular hypertrophy.
Resumo:
AIM: Genetic polymorphisms of the human angiotensinogen gene are frequent and may induce up to 30% increase of plasma angiotensinogen concentrations with a blood pressure increase of up to 5mmHg. Their role for the pathogenesis of human arterial hypertension remains unclear. High plasma angiotensinogen levels could increase the sensitivity to other blood pressure stressors. METHODS: Male transgenic rats with a 9-fold increase of plasma angiotensinogen concentrations and male non-transgenic rats aged 10 weeks were treated or not with NG-Nitro-L-arginine-methyl ester for 3 weeks in their drinking water (n=3/group). Systolic blood pressure and body weight were measured at baseline and at the end of the study when left ventricular weight and ventricular expression of angiotensin I-converting enzyme and procollagen Iα1 were determined (polymerase chain reaction). RESULTS: At baseline, transgenic rats had +18mmHg higher bood pressure and -8% lower body weight compared to non-transgenic rats (P<0.05) without significant changes for the vehicle groups throughout the study (P>0.05). NG-Nitro-L-arginine-methyl ester increased blood pressure, left ventricular weight and left ventricular weight indexed for body weight by +41%, +17.6% and +18.6% (P<0.05) in transgenic and +25%, +5.3% and +6.7% (P>0.05) in non-transgenic rats compared to untreated animals, respectively. Cardiac gene expression showed no differences between groups (P>0.05). CONCLUSION: Increased plasma angiotensinogen levels may sensitize to additional blood pressure stressors. Our preliminary results point towards an independent role of angiotensinogen in the pathogenesis of human hypertension and associated end-organ damage.
Resumo:
Despite the fact that mineralocorticoid receptor (MR) antagonist drugs such as spironolactone and eplerenone reduce the mortality in heart failure patients, there is, thus far, no unambiguous demonstration of a functional role of MR in cardiac cells. The aim of this work was to investigate the activation pathway(s) mediating corticosteroid-induced up-regulation of cardiac calcium current (ICa). In this study, using neonatal cardiomyocytes from MR or glucocorticoid receptor (GR) knockout (KO) mice, we show that MR is essential for corticosteroid-induced up-regulation of ICa. This study provides the first direct and unequivocal evidence for MR function in the heart.
Resumo:
Cardiac hypertrophy is frequent in chronic hypertension. The renin-angiotensin system, via its effector angiotensin II (Ang II), regulates blood pressure and participates in sustaining hypertension. In addition, a growing body of evidence indicates that Ang II acts also as a growth factor. However, it is still a matter of debate whether the trophic effect of Ang II can trigger cardiac hypertrophy in the absence of elevated blood pressure. To address this question, transgenic mice overexpressing the rat angiotensinogen gene, specifically in the heart, were generated to increase the local activity of the renin-angiotensin system and therefore Ang II production. These mice develop myocardial hypertrophy without signs of fibrosis independently from the presence of hypertension, demonstrating that local Ang II production is important in mediating the hypertrophic response in vivo.
Resumo:
Hypertension is highly prevalent in transplantation and affects all type of organs. With the introduction of calcineurin inhibitors as immunosuppressive drugs, acute allograft rejection episodes have been significantly reduced and hence patient and allograft survival rates have dramatically improved. However, cardiovascular complications have become an important cause of morbidity and mortality. Treating cardiovascular risk factors such as diabetes, dyslipidemia and hypertension seems obvious, however in this population, there is little evidence for specific blood pressure targets, or for the best strategy to achieve blood pressure control. The aim of this article is to review the epidemiology and physiopathology of hypertension in transplant recipients as well as its clinical management.