922 resultados para Juta fibers
Resumo:
Based on a self-similar array model, we systematically investigated the axial Young's modulus (Y-axis) of single-walled carbon nanotube (SWNT) arrays with diameters from nanometer to meter scales by an analytical approach. The results show that the Y-axis of SWNT arrays decreases dramatically with the increases of their hierarchy number (s) and is not sensitive to the specific size and constitution when s is the same, and the specific Young's modulus Y-axis(s) is independent of the packing configuration of SWNTs. Our calculations also show that the Y-axis of SWNT arrays with diameters of several micrometers is close to that of commercial high performance carbon fibers (CFs), but the Y-axis(s) of SWNT arrays is much better than that of high performance CFs. (C) 2005 American Institute of Physics.
Resumo:
Objectives/Hypothesis: To analyze clinical and epidemiological features of neck nerve schwannomas, with emphasis on the neurologic outcome after surgical excision sparing as much of nerve fibers as possible with enucleation technique. Study Design: Retrospective study. Methods: Review of medical records from 1987 to 2006 of patients with neck nerve schwannomas, treated in a single institution. Results: Twenty-two patients were identified. Gender distribution was equal and age ranged from 15 to 61 years (mean: 38.6 years). Seven vagal, four brachial plexus, four sympathetic trunk, three cervical plexus, and two lesions on other sites could be identified. Most common symptom was neck mass. Local or irradiated pain also occurred in five cases. Median growing rate of tumors was 3 mm per year. Nerve paralysis was noted twice (a vagal schwannoma and a hypoglossal paralysis compressed by a vagal schwannoma). Different techniques were employed, and seven out of nine patients kept their nerve function (78%) after enucleation. No recurrence was observed in follow-up. Conclusions: Schwannomas should be treated surgically because of its growing potential, leading to local and neural compression symptoms. When possible, enucleation, which was employed in 10 patients of this series, is the recommended surgical option, allowing neural function preservation or restoration in most instances. This is especially important in the head and neck, where denervation may have a significant impact on the quality of life.
Resumo:
Collapsed skin folds after bariatric weight loss are often managed by plastic procedures, but changes in dermal composition and architecture have rarely been documented. Given the potential consequences on surgical outcome, a prospective histochemical study was designed. The hypothesis was that a deranged dermal fiber pattern would accompany major changes in adipose tissue. Female surgical candidates undergoing postbariatric abdominoplasty (n = 40) and never obese women submitted to control procedures (n = 40) were submitted to double abdominal biopsy, respectively in the epigastrium and hypogastrium. Histomorphometric assessment of collagen and elastic fibers was executed by the Image Analyzer System (Kontron Electronic 300, Zeiss, Germany). Depletion of collagen, but not of elastic fibers, in cases with massive weight loss was confirmed. Changes were somewhat more severe in epigastrium (P = 0.001) than hypogastrium (P = 0.007). Correlation with age did not occur. (1) Patients displayed lax, soft skin lacking sufficient collagen fiber network. (2) Elastic fiber content was not damaged, and was even moderately increased in epigastrium; (3) Preoperative obesity negatively correlated with hypogastric collagen concentration; (4) Future studies should pinpoint the roles of obesity, and especially of massive weight loss, on dermal architecture and response to surgery.
Resumo:
Protrusion of the abdominal wall secondary to abdominoplasty may occur in patients with weakness of the aponeurotic structures. The anterior layer of the rectus abdominis muscle consists of fibers that are transverse rather than vertical. Based on this anatomical feature, vertical sutures are suggested for the correction of diastasis recti, since they include a greater amount of fascial fibers and thus would be more resistant to tensile strength than horizontal ones. The anterior layers of the rectus abdominis muscles of 15 fresh cadavers were dissected. Two vertical lines were marked on each side of the linea alba, corresponding to the site where plication is usually performed in abdominoplasties. Three abdominal levels were evaluated: the supraumbilical, umbilical, and infraumbilical levels. A simple suture was placed in the vertical direction in one group and in the horizontal direction in the other group, at each of the three levels previously described. These sutures were connected to a dynamometer, which was pulled medially toward the linea alba until rupture of the aponeurosis occurred. The mean strength required to rupture the aponeurotic structures in which the vertical sutures had been placed was greater than for the horizontal ones (p < 0.0001). The vertical suture of the rectus abdominis sheaths was stronger than the horizontal suture because of the more transversal arrangement of its aponeurotic fibers. Thus, routine use of the vertical suture in plications of the aponeurosis of the rectus abdominis muscles is suggested.
Resumo:
Introduction: Perineural invasion is a well-recognized form of cancer dissemination. However, it has been reported only in few papers concerning cutaneous carcinomas ( basal cell, BCC, and squamous cell, SCC). Moreover, the incidence is considered to be very low. Niazi and Lambert [Br J Plast Surg 1993; 46: 156-157] reported only 0.18% of perineural invasion among 3,355 BCCs. It is associated with high-risk subtypes, as morphea-like, as well as with an increased risk of local recurrence. No paper was found in the literature looking for perineural invasion in very aggressive skin cancers with skull base extension, with immunohistochemical analysis. Methods: This is a retrospective review, including 35 very advanced skin carcinomas with skull base invasion (24 BCCs and 11 SCCs, operated on at a single institution from 1982 to 2000). Representative slides were immunohistochemically evaluated with antiprotein S-100, in order to enhance nerve fibers and to detect perineural invasion. The results were compared to 34 controls with tumors with a good outcome, treated in the same time frame at the same Institution. Results: Twelve (50.0%) of the BCCs with skull base invasion had proven perineural invasion, as opposed to only 1 (4.6%) of the controls, and this difference was statistically significant (p < 0.001). Regarding SCCs, 7 aggressive tumors (63.6%) showed perineural invasion compared to only 1 (10.0%) of the controls, but this difference did not reach significance (p=0.08), due to the small number of cases. Conclusions: In this series, it was demonstrated that immunohistochemically detected perineural invasion was very prevalent in advanced skin carcinomas. In addition, it was statistically associated with extremely aggressive BCCs with skull base invasion. Copyright (c) 2008 S. Karger AG, Basel
Resumo:
To explore the hypothesis that air pollution promotes cardiovascular changes, Swiss mice were continuously exposed, since birth, in two open-top chambers (filtered and nonfiltered for airborne particles <= 0.3 mu m) placed 20 m from a street with heavy traffic in downtown Sao Paulo, twenty-four hours per day for four months. Fine particle (PM(2.5)) concentration was determined gravimetrically; hearts were analyzed by morphometry. There was a reduction of the PM(2.5) inside the filtered chamber (filtered = 8.61 +/- 0.79 mu g/m(3), nonfiltered = 18.05 +/- 1.25 mu g/m(3), p < .001). Coronary arteries showed no evidence of luminal narrowing in the exposed group but presented higher collagen content in the adventitia of LV large-sized and RV midsized vessels (p = .001) and elastic fibers in both tunicae adventitia and intima-media of almost all sized arterioles from both ventricles (p = .03 and p = .001, respectively). We concluded that chronic exposure to urban air since birth induces mild but significant vascular structural alterations in normal individuals, presented as coronary arteriolar fibrosis and elastosis. These results might contribute to altered vascular response and ischemic events in the adulthood.
Resumo:
The importance of lung tissue in asthma pathophysiology has been recently recognized. Although nitric oxide mediates smooth muscle tonus control in airways, its effects on lung tissue responsiveness have not been investigated previously. We hypothesized that chronic nitric oxide synthase (NOS) inhibition by N-omega-nitro-L-arginine methyl ester (L-NAME) may modulate lung tissue mechanics and eosinophil and extracellular matrix remodeling in guinea pigs with chronic pulmonary inflammation. Animals were submitted to seven saline or ovalbumin exposures with increasing doses (1 similar to 5 mg/ml for 4 wk) and treated or not with L-NAME in drinking water. After the seventh inhalation (72 h), animals were anesthetized and exsanguinated, and oscillatory mechanics of lung tissue strips were performed in baseline condition and after ovalbumin challenge (0.1%). Using morphometry, we assessed the density of eosinophils, neuronal NOS (nNOS)- and inducible NOS (iNOS)-positive distal lung cells, smooth muscle cells, as well as collagen and elastic fibers in lung tissue. Ovalbumin-exposed animals had an increase in baseline and maximal tissue resistance and elastance, eosinophil density, nNOS- and iNOS-positive cells, the amount of collagen and elastic fibers, and isoprostane-8-PGF(2 alpha) expression in the alveolar septa compared with controls (P < 0.05). L-NAME treatment in ovalbumin-exposed animals attenuated lung tissue mechanical responses (P < 0.01), nNOS- and iNOS-positive cells, elastic fiber content (P < 0.001), and isoprostane-8-PGF(2 alpha) in the alveolar septa (P < 0.001). However, this treatment did not affect the total number of eosinophils and collagen deposition. These data suggest that NO contributes to distal lung parenchyma constriction and to elastic fiber deposition in this model. One possibility may be related to the effects of NO activating the oxidative stress pathway.
Resumo:
We investigated the effects of substance P (SP) and neurokinin A (NKA) infusion and acute stimulation of capsaicin-sensitive sensory nerves fibers (CAP) on lung recruitment of neuronal nitric oxide synthase (nNOS)-positive inflammatory and respiratory sepithelial (RE) cells in guinea-pigs. We evaluated if the effects of CAP stimulation were maintained until 14 days and had functional pulmonary repercussions. After 24 h of CAP and 30 min after SP and NKA infusions there was an increase in nNOS-positive eosinophils and mononuclear cells compared to controls (P < 0.05). SP group presented an increase in nNOS-positive RE (P < 0.05). After 14 days of CAP stimulation, there was a reduction in resistance (R-rs) and elastance (E-rs) of respiratory system in capsaicin pre-treated animals. We noticed a correlation between nNOS-positive eosinophils (R = -0.644, P < 0.05) and mononuclear cells (R = -0.88, P < 0.001) and R-rs. Concluding, CAP and neurokinins increase nNOS expression by inflammatory and RE cells. The increase in nNCS expression induced by low and high doses stimulation of CAP is longstanding and correlated to pulmonary mechanical repercussions. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
In ascending aorta aneurysms, there is an enlargement of the whole vessel, whereas aortic dissections (ADs) are characterized by the cleavage of the wall into 2 sheets at the external half. We searched if alterations in collagen could be related to these diseases. Sections of aortas from 14 case patients with acute dissections, 10 case patients with aneurysms, and 9 control subjects were stained with picrosirius. Slides were analyzed under polarized microscopy to evaluate the structure of collagen fibers. The proportion of collagen was calculated in each half of the medial layer by color detection in a computerized image analysis system. Collagen appearance under polarized light was consistent with collagenolysis. The mean collagen proportions at the inner and outer halves, respectively, were 0.50 +/- 0.13 and 0.40 +/- 0.08 in the control group, 0.20 +/- 0.10 and 0.18 +/- 0.12 in the AD group, and 0.33 +/- 0.12 and 0.19 +/- 0.12 in the aneurysm group. The AD (P < .01) and control (P = .04) groups had less collagen at the external half, no difference was found in the aneurysm group (P = .71). In both halves, there was less collagen in the case patients than in the control subjects (all P < .01), but at the internal half, the decrease was significantly greater in the case patients with aneurysms than in those with dissections (P = .03; at the external half, P = .99). Aortic dissections and aneurysms show a decrease in collagen content that could be related to a weakness of the wall underlying the diseases, but the locations of the decrease differ: in dissections, it is situated mostly at the external portion of the media (site of cleavage), whereas in aneurysms, it is more diffuse, consistent with the global enlargement. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
From a general model of fiber optics, we investigate the physical limits of soliton-based terabaud communication systems. In particular we consider Raman and initial quantum noise effects which are often neglected in fiber communications. Simulations of the position diffusion in dark and bright solitons show that these effects become increasingly important at short pulse durations, even over kilometer-scale distances. We also obtain an approximate analytic theory in agreement with numerical simulations, which shows that the Raman effects exceed the Gordon-Haus jitter for sub-picosecond pulses. (C) 1997 Elsevier Science B.V.
Resumo:
An ''optical meson'' (two-photon quantum soliton) is proven to exist in a parametric waveguide. This could provide an ideal quantum soliton environment, because of more realistic formation lengths and much larger binding energies than chi((3)) quantum solitons. We estimate the binding energy, radius, and interaction length in comparison to the chi((3)) case in optical fibers.
Resumo:
We recently demonstrated that creatine supplementation increased some features of lung allergic sensitization in mice. On the other hand, other studies have shown that aerobic exercise inhibited allergic airway inflammation and remodeling. We hypothesized that aerobic exercise may decrease the exacerbatory effects of the creatine supplementation in a murine model of asthma. Balb/c mice were divided into six groups: Control, Creatine (Cr), Low Intensity Exercise + Creatine (Low + Cr), Ovalbumin (OVA), Ovalbumin + Creatine (OVA + Cr) and Ovalbumin + Creatine + Low Intensity Exercise (OVA + Cr + Low). OVA-sensitized groups were sensitized with OVA intraperitoneal injections (days 0, 14, 28, and 42). Aerosol challenge (OVA 1 %) and Cr treatment (0.5 g/kg/day) were initiated on Day 21 until Day 53. Low intensity exercise began on day 22 and was sustained until day 50. Low intensity exercise in the presence of creatine supplementation in sensitized mice resulted in a decreased number of eosinophils in BALF (p < 0.001) and in the airways (P < 0.001), and a decreased density of inflammatory cells positive to IL-4 (p < 0.001) and IL-5 (p < 0.001), airway collagen (p < 0.001) and elastic fibers (p < 0.001) content, airway smooth muscle thickness (p < 0.001) and bronchoconstriction index (p < 0.05) when compared with OVA + Cr group. These results suggest that aerobic exercise reduces the exacerbatory effects of creatine supplementation in chronically sensitized mice.
Resumo:
We consider solutions to the second-harmonic generation equations in two-and three-dimensional dispersive media in the form of solitons localized in space and time. As is known, collapse does not take place in these models, which is why the solitons may be stable. The general solution is obtained in an approximate analytical form by means of a variational approach, which also allows the stability of the solutions to be predicted. Then, we directly simulate the two-dimensional case, taking the initial configuration as suggested by the variational approximation. We thus demonstrate that spatiotemporal solitons indeed exist and are stable. Furthermore, they are not, in the general case, equivalent to the previously known cylindrical spatial solitons. Direct simulations generate solitons with some internal oscillations. However, these oscillations neither grow nor do they exhibit any significant radiative damping. Numerical solutions of the stationary version of the equations produce the same solitons in their unperturbed form, i.e., without internal oscillations. Strictly stable solitons exist only if the system has anomalous dispersion at both the fundamental harmonic and second harmonic (SH), including the case of zero dispersion at SH. Quasistationary solitons, decaying extremely slowly into radiation, are found in the presence of weak normal dispersion at the second-harmonic frequency.
Resumo:
1. Mechanically skinned fibres from skeletal muscles of the rat, toad and yabby were used to investigate the effect of saponin treatment on sarcoplasmic reticulum (SR) Ca2+ loading properties. The SR was loaded submaximally under control conditions before and after treatment with saponin and SR Ca2+ was released with caffeine. 2. Treatment with 10 mu g ml(-1) saponin greatly reduced the SR Ca2+ loading ability of skinned fibres from the extensor digitorum longus muscle of the rat with a rate constant of 0.24 min(-1). Saponin concentrations up to 150 mu g ml(-1) and increased exposure time up to 30 min did not further reduce the SR Ca2+ loading ability of the SR, which indicates that the inhibitory action of 10-150 mu g ml(-1) saponin is not dose dependent. The effect of saponin was also not dependent on the state of polarization of the transverse-tubular system. 3. Treatment with saponin at concentrations up to 100 mu g ml(-1) for 30 min did not affect the Ca2+ loading ability of SR in skinned skeletal muscle fibres from the twitch portion of the toad iliofibularis muscle but SR Ca2+ loading ability decreased markedly with a time constant of 0.22 min(-1) in the presence of 150 mu g ml(-1) saponin. 4. The saponin dependent increase in permeability could be reversed in both rat and toad fibres by short treatment with 6 mu M Ruthenium Red, a potent SR Ca2+ channel blocker, suggesting that saponin does affect the SR Ca2+ channel properties in mammalian and anuran skeletal muscle. 5. Treatment of skinned fibres of long sarcomere length (> 6 mu m) from the claw muscle of the yabby (a freshwater decapod crustacean) with 10 mu g ml(-1) saponin for 30 min abolished the ability of the SR to load Ca2+, indicating that saponin affects differently the SR from skeletal muscles of mammals, anurans and crustaceans. 6. is concluded that at relatively low concentrations, saponin causes inhibition of the skeletal SR Ca2+ loading ability in a species dependent manner, probably by increasing the Ca2+ loss through SR Ca2+ release channels.
Resumo:
Endomyocardial fibrosis (EMF) is a restrictive cardiomyopathy of unknown etiology prevalent in tropical regions affecting the inflow tract and apex of one or both ventricles, which show fibrous thickening of the endocardium and adjacent myocardium. Surgical treatment is recommended for patients in functional classes III or IV (New York Heart Association). The gross and histological features of the heart have been comprehensively studied in autopsies, but studies in surgical samples are still lacking. Histological and immunohistochemical features of EMF in surgical samples collected from 32 patients were described and correlated with clinical data. Polymerase chain reaction (PCR) and reverse transcription-PCR, performed on formalin fixed endomyocardial samples, were used retrospectively to detect genomes of certain cardiotropic viruses and Toxoplasma gondii. Ventricular endocardium was thickened by superficial acellular hyaline collagen fibers type I and III, with predominance of the former type. Besides fibrosis, a chronic inflammatory process and an anomalous lymphatic rich vascular pattern were observed in the deep endocardium, connected to the terminal coronary circulation of the myocardium, which might be an important pathological finding concerning EMF pathogenesis. Molecular analysis of the endomyocardium revealed high incidence of cardiotropic infective agents (6/12, 50%); however, their role in the disease pathogenesis is still controversial.