975 resultados para Joint Compensation Scheme
Resumo:
Conventional thyristor-based load commutated inverter (LCI)-fed wound field synchronous machine operates only above a minimum speed that is necessary to develop enough back emf to ensure commutation. The drive is started and brought up to a speed of around 10-15% by a complex `dc link current pulsing' technique. During this process, the drive have problems such as pulsating torque, insufficient average starting torque, longer starting time, etc. In this regard a simple starting and low-speed operation scheme, by employing an auxiliary low-power voltage source inverter (VSI) between the LCI and the machine terminals, is presented in this study. The drive is started and brought up to a low speed of around 15% using the VSI alone with field oriented control. The complete control is then smoothly and dynamically transferred to the conventional LCI control. After the control transfer, the VSI is turned off and physically disconnected from the main circuit. The advantages of this scheme are smooth starting, complete control of torque and flux at starting and low speeds, less starting time, stable operation, etc. The voltage rating of the required VSI is very low of the order of 10-15%, whereas the current rating is dependent on the starting torque requirement of the load. The experimental results from a 15.8 hp LCI-fed wound field synchronous machine are given to demonstrate the scheme.
Resumo:
An improved Monte Carlo technique is presented in this work to simulate nanoparticle formation through a micellar route. The technique builds on the simulation technique proposed by Bandyopadhyaya et al. (Langmuir 2000, 16, 7139) which is general and rigorous but at the same time very computation intensive, so much so that nanoparticle formation in low occupancy systems cannot be simulated in reasonable time. In view of this, several strategies, rationalized by simple mathematical analyses, are proposed to accelerate Monte Carlo simulations. These are elimination of infructuous events, removal of excess reactant postreaction, and use of smaller micelle population a large number of times. Infructuous events include collision of an empty micelle with another empty one or with another one containing only one molecule or only a solid particle. These strategies are incorporated in a new simulation technique which divides the entire micelle population in four classes and shifts micelles from one class to other as the simulation proceeds. The simulation results, throughly tested using chi-square and other tests, show that the predictions of the improved technique remain unchanged, but with more than an order of magnitude decrease in computational effort for some of the simulations reported in the literature. A post priori validation scheme for the correctness of the simulation results has been utilized to propose a new simulation strategy to arrive at converged simulation results with near minimum computational effort.
Resumo:
We present a method to statically balance a general treestructured,planar revolute-joint linkage loaded with linear springs or constant forces without using auxiliary links. The balancing methods currently documented in the literature use extra links; some do not apply when there are spring loads and some are restricted to only two-link serial chains. In our method, we suitably combine any non-zero-free-length load spring with another spring to result in an effective zero-free-length spring load. If a link has a single joint (with the parent link), we give a procedure to attach extra zero-free-length springs to it so that forces and moments are balanced for the link. Another consequence of this attachment is that the constraint force of the joint on the parent link becomes equivalent to a zero-free-length spring load. Hence, conceptually,for the parent link, the joint with its child is removed and replaced with the zero-free-length spring. This feature allows recursive application of this procedure from the end-branches of the tree down to the root, satisfying force and moment balance of all the links in the process. Furthermore, this method can easily be extended to the closed-loop revolute-joint linkages, which is also illustrated in the paper.
Resumo:
The insulated mast scheme for the lightning protection system can be found in a few practical designs. Many advantages over conventional protection system are some times envisaged. However, the technical literature on the analysis of such schemes and further quantification of their protection efficacy is rather scarce. As a first step to address this problem, the present work is taken up and the potential rise at the top and ground end currents in insulating mast scheme with single tower is investigated for several tower heights and pertinent values of other parameters. The quantities that are investigated are the potential difference across the insulation and ground end currents for both tower and the ground wires. Quantifications are carried out for the relevant range of stroke current front times. The influence of number of ground wires, their earthing location and to a limited extent, the length of the insulating support have been ascertained. Some relevant discussion on insulation strength is made. These findings are quite novel and aid in quantification of the practical efficacy of the insulated mast scheme. The level of induction to the support tower and possible flashover to the same are not in favour of this scheme.
Resumo:
The idea of ubiquity and seamless connectivity in networks is gaining more importance in recent times because of the emergence of mobile devices with added capabilities like multiple interfaces and more processing abilities. The success of ubiquitous applications depends on how effectively the user is provided with seamless connectivity. In a ubiquitous application, seamless connectivity encompasses the smooth migration of a user between networks and providing him/her with context based information automatically at all times. In this work, we propose a seamless connectivity scheme in the true sense of ubiquitous networks by providing smooth migration to a user along with providing information based on his/her contexts automatically without re-registration with the foreign network. The scheme uses Ubi-SubSystems(USS) and Soft-Switches(SS) for maintaining the ubiquitous application resources and the users. The scheme has been tested by considering the ubiquitous touring system with several sets of tourist spots and users.
Resumo:
Common-mode voltage generated by the PWM inverter causes shaft voltage, bearing current and ground leakage current in induction motor drive system, resulting in an early motor failure. This paper presents a common-mode elimination scheme for a five-level inverter with reduced power circuit complexity. The proposed scheme is realised by cascading conventional two-level and conventional NPC three-level inverters in conjunction with an open-end winding three-phase induction motor drive and the common-mode voltage (CMV) elimination is achieved by using only switching states that result in zero CMV, for the entire modulation range.
Resumo:
This paper addresses the problem of secure path key establishment in wireless sensor networks that uses the random key pre-distribution technique. Inspired by the recent proxy-based scheme in the work of Ling and Znati (2005) and Li et al. (2005), we introduce a friend-based scheme for establishing pairwise keys securely. We show that the chances of finding friends in a neighbourhood are considerably more than that of finding proxies, leading to lower communication overhead. Further, we prove that the friend-based scheme performs better than the proxy-based scheme both in terms of resilience against node capture as well as in energy consumption for pairwise key establishment, making our scheme more feasible.