981 resultados para Island ecology
Resumo:
The ecology and reproductive biology of the leatherback turtle (Dennochelys coriacea) was studied on a high-energy nesting beach near Laguna Jalova, Costa Rica, between 28 March and 8 June 1985. The peak of nesting was between 15 April and 21 May. Leatherbacks here measured an average 146.6 cm straightline standard carapace length and laid an average 81.57 eggs. The eggs measured a mean 52.12 mm diameter and weighed an average of 85.01 g. Significant positive relationships were found between the carapace lengths of nesters and their clutch sizes and average diameter and weight of eggs. The total clutch weighed between 4.02 and 13.39 kg, and yolkless eggs accounted for an average 12.4% of this weight. The majority of nesters dug shallow (<24 cm) body pits and spent an average 81 minutes at the nest site. A significant number of c1utcbes were laid below the berm crest. In a hatchery 42.2% of the eggs hatched, while in natural nests 70.2% hatched. The average hatchling carapace length was 59.8 mm and weight was 44.6 g. The longevity of leatherback tracks and nests on the beach was affected by weather. One nester was recaptured about one year later off the coast of Mississippi, U.S.A. Egg poaching was intense on some sections of the Costa Rican coast. Four aerial surveys in four different months provided the basis for comparing density of nesting on seven sectors of the Caribbean coast of Costa Rica. The beach at Jalova is heavily used by green turtles (Chelonia mydJJs) after the leatherback nesting season. The role of the Parque Nacional Tortuguero in conserving the leatherback and green turtle is discussed.(PDF file contains 20 pages.)
Resumo:
The Cape Canaveral, Florida, marine ecosystem is unique. There are complex current and temperature regimes that form a faunal transition zone between Atlantic tropical and subtropical waters. This zone is rich faunistically and supports large commercial fISheries for fish, scallops, and shrimp. Canaveral is also unique because it has large numbers of sea turtles year-round, this turtle aggregation exhibiting patterned seasonal changes in numbers, size frequency, and sex ratio. Additionally, a significant portion of this turtle aggregation hibernates in the Canaveral ship channel, a phenomenon rare in marine turtle populations. The Cape Canaveral area has the largest year-round concentration of sea turtles in the United States. However, the ship channel is periodically dredged by the U.S. Army Corps of Engineers in order to keep Port Canaveral open to U.S. Navy vessels, and preliminary surveys showed that many sea turtles were incidentally killed during dredging operations. In order for the Corps of Engineers to fulfill its defense dredging responsibilities, and comply with the Endangered Species Act of 1973, an interagency Sea Turtle Task Force was formed to investigate methods of reducing turtle mortalities. This Task Force promptly implemented a sea turtle research plan to determine seasonal abundance, movement patterns, sex ratios, size frequencies, and other biological parameters necessary to help mitigate dredging conflicts in the channel. The Cape Canaveral Sea Turtle Workshop is a cooperative effort to comprehensively present research results of these important studies. I gratefully acknowledge the support of everyone involved in this Workshop, particularly the anonymous team of referees who painstakingly reviewed the manuscripts. The cover illustration was drawn by Jack C. Javech. (PDF file contains 86 pages.)
Resumo:
The 1984 International Symposium and Workshop on the Biology of Fur Seals originated in informal talks in 1981. However, the scope and focus of the symposium remained unclear until an informal workshop was held in San Diego in June 1983. This meeting synthesised data on the foraging and pup attendance activities of six species of fur seals, and attempted to formulate a coherent framework for the adaptations associated with their maternal strategies (Gentry et al. 1986). During the workshop it was clear that comparative data on many key aspects of fur seal biology and ecology were missing. This absence of data applied not only to less well known species, for some of which considerable unpublished data existed, but also to better known species for which research in some areas had either been neglected or unreported. The value of applying the comparative method to seals, especially comparisons integrating physiology, ecology, and reproductive biology, was amply demonstrated by the results of the 1983 workshop (Gentry and Kooyman 1986). However, we were also aware that many other problems outside the area of maternal strategies could benefit from comparative data, such as recovery of populations from the effects of harvesting. Therefore, to accommodate the range of potential research, we organized this symposium to produce an up-to-date synthesis of relevant information for all species of fur seals. It was also clear that fur seal research could benefit from increased communication and collaboration among its practitioners. To foster the spread of ideas, we held oral presentations on some topics of current research and techniques and organized workshops on specific topics, in addition to providing opportunities for informal talks among participants. Thanks to generous support from the British Antarctic Survey, the National Marine Fisheries Service of the United States, and the Scientific Committee on Antarctic Research, the International Fur Seal Symposium was held at the British Antarctic Survey, Cambridge, England, 23-27 April 1984. The 36 participants are shown in Figure 1. A list of Symposium participants and authors is presented in Appendix 1 of the Proceedings. (PDF file contains 220 pages.)
Resumo:
Diets of 76 species of fish larvae from most oceans of the world were inventoried on the basis of information in 40 published studies. Although certaln geographlc, size- and taxon-specific patterns were apparent, certain zooplankton taxa appeared in the diets of larvae of a variety of fish species in numerous localities. Included were six genera of calanoid copepods (Acartia, Calanus, Centropages, Paracalanus, Pseudocaianus, Temora), three genera of cyclopoid copepods (Corycaeus, Oilhona, Oncata), harpacticoid copepods, copepod nauplii, tintinoids, cladocerans of the genera Evadne and Podon, barnacle nauplii, gastropod larvae, pteropods of the genus Limacina, and appendicularians. Literature on feeding habits of these zooplankters reveals that most of the copepods are omnivorous, feeding upon both phytoplankton and other zooplankton. Some taxa, such as Calanus, Paracalanus, Pseudocalanus, and copepod nauplii appear to be primarily herbivorous, while others, such as Acartia, Centropages, Temora, and cyclopoids exhibit broad omnivory or carnivory. The noncopepod zooplankters are primarily filter-feeders upon pbytoplankton and/or bacterioplankton. Despite the importance of zooplankters in larval fish food webs, spectic knowledge of the feeding ecology of many taxa is poor. Further, much present knowledge comes only from laboratory investigations that may not accurately portray feeding habits of zooplankters in nature. Lack of knowledge of the feeding ecology of many abundant zooplankters, which are also important in larval fish food webs, precludes realistic understanding of pelagic ecosystem dynamics. (PDF file contains 34 pages.)
Resumo:
This paper includes information about the Pribilof Islands since their discovery by Russia in 1786 and the population of northern fur seals, Cailorhinus ursinus, that return there each summer to bear young and to breed. Russia exterminated the native population of sea Oilers, Enhydra lulris, here and nearly subjected the northern fur seal to the same fate before providing proper protection. The northern fur seal was twice more exposed to extinction following the purchase of Alaska and the Pribilof Islands by the United States in 1867. Excessive harvesting was stopped as a result of strict management by the United States of the animals while on land and a treaty between Japan, Russia, Great Britain (for Canada), and the United States that provided needed protection at sea. In 1941, Japan abrogated this treaty which was replaced by a provisional agreement between Canada and the United States that protected the fur seals in the eastern North Pacific Ocean. Japan, the U.S.S.R., Canada, and the United States again insured the survival of these animals with ratification in 1957 of the "Interim Convention on the Conservation of North Pacific Fur Seals," which is still in force. Under the auspices of this Convention, the United States launched an unprecedented manipulation of the resource through controlled removal during 1956-68 of over 300,000 females considered surplus. The biological rationale for the reduction was that production of fewer pups would result in a higher pregnancy rate and increased survival, which would, in turn, produce a sustained annual harvest of 55,000-60,000 males and 10,000-30,000 females. Predicted results did not occur. The herd reduction program instead coincided with the beginning of a decline in the number of males available for harvest. Suspected but unproven causes were changes in the toll normally accounted for by predation, disease, adverse weather, and hookworms. Depletion of the animals' food supply by foreign fishing Heets and the entanglement of fur seals in trawl webbing and other debris discarded at sea became a prime suspect in altering the average annual harvest of males on the Pribilof Islands from 71,500 (1940-56) to 40,000 (1957-59) to 36,000 (1960) to 82,000 (1961) and to 27,347 (1972-81). Thus was born the concept of a research control area for fur seals, which was agreed upon by members of the Convention in 1973 and instituted by the United States on St. George Island beginning in 1974. All commercial harvesting of fur seals was stopped on St. George Island and intensive behavioral studies were begun on the now unharvested population as it responds to the moratorium and attempts to reach its natural ceiling. The results of these and other studies here and on St. Paul Island are expected to eventually permit a comparison between the dynamics of unharvested and harvested populations, which should in turn permit more precise management of fur seals as nations continue to exploit the marine resources of the North Pacific Ocean and Bering Sea. (PDF file contains 32 pages.)
Resumo:
Venomous Indo-Pacific lionfish (Pterois miles and P. volitans) are now established along the Southeast U.S.A. and parts of the Caribbean and pose a serious threat to reef fish communities of these regions. Lionfish are likely to invade the Gulf of Mexico and potentially South America in the near future. Introductions of lionfish were noted since the 1980s along south Florida and by 2000 lionfish were established off the coast of North Carolina. Lionfish are now one of the more numerous predatory reef fishes at some locations off the Southeast U.S.A. and Caribbean. Lionfish are largely piscivores that feed occasionally on economically important reef fishes. The trophic impacts of lionfish could alter the structure of native reef fish communities and potentially hamper stock rebuilding efforts of the Snapper –Grouper Complex. Additional effects of the lionfish invasion are far-reaching and could increase coral reef ecosystem stress, threaten human health, and ultimately impact the marine aquarium industry. Control strategies for lionfish are needed to mitigate impacts, especially in protected areas. This integrated assessment provides a general overview of the biology and ecology of lionfish including genetics, taxonomy, reproductive biology, early life history and dispersal, venom defense and predation, and feeding ecology. In addition, alternative management actions for mitigating the negative impacts of lionfish, approaches for reducing the risk of future invasions, and directions for future research are provided.
Resumo:
ENGLISH: In 1952 and 1953, during the course of a study of the abrupt decline and apparent disappearance from the Gulf of Nicoya of the population of anchovetas (Cetengraulis mysticetus), an important tuna bait fish, considerable material was collected on the taxonomy, biology, and ecology of the several anchovies and the herrings inhabith1g the Gulf. The Gulf of Nicoya, approximately 50 miles long and varying in width from about 5 to 35 miles, is located on the Pacific coast of Costa Rica. The family Engraulididae is represented by four genera comprising fourteen species, and nine species were identified as members of eight genera of the family Clupeidae. All of the species inhabit other coastal areas of the tropical Eastern Pacific. SPANISH: En 1952 Y 1953, durante el curso de un estudio sobre la declinación abrupta y la aparente desaparición en el Golfo de Nicoya de la población de anchovetas (Cetengraulis mysticetus) un pez de importancia para la pesca del atún, se recolectó material considerable relacionado con la taxonomía, biología y ecología de las diversas especies de anchoas y arenques que habitan dicho Golfo. El Golfo de Nicoya, que mide aproximadamente 50 millas de largo y varía en su anchura entre 5 y 35 millas, se encuentra en la costa del Pacífico de Costa Rica. La familia de los Engráulidos está representada por cuatro géneros que comprenden catorce especies, y otras nueve fueron identificadas como miembros de ocho géneros de la familia Clupeidae. Todas estas especies habitan otras áreas costeras del Pacífico Oriental tropical. (PDF contains 144 pages.)
Resumo:
ENGLISH: Strong coastal upwelling occurs in the Gulf of Panama regularly each year during the season, from about January through April, when strong northerly winds are blowing offshore. Because of the evident importance of upwelling to the ecology of the Gulf of Panama, we commenced in the fall of 1954 a study of various physical, chemical, and biological phenomena associated therewith. Observations were taken at bi-weekly intervals at a fixed location in the Gulf (approximately 10 miles SE of Taboga Island) to supplement the serial observations of sea level, sea temperature, and winds that have been gathered for many years by the Panama Canal Company. SPANISH: Cado año, en la estación de enero a abril, cuando los vientos del norte soplan vigorosamente frente a la costa, ocurre en el Golfo de Panamá un fuerte afloramiento costanero. Se cree que este afloramiento periódico en el Golfo de Panamá es responsable de la alta productividad biológica que sostiene considerables cantidades de organismos de importancia comercial. Esta región, por ejemplo, es una fuente importante de la especie Cetengraulis mysticetus) pez de carnada para el atún, (Alverson y Shimada, 1957) y mantiene una considerable pesca de camarones llamados langostinos (Burkenroad, Obarrio y Mendoza,1955). (PDF contains 54 pages.)
The distribution, abundance, and ecology of larval tunas from the entrance to the Gulf of California
Resumo:
ENGLISH: This study is based on collections of larvae of Thunnus albacares, Euthynnus llneatus, and Auxis sp. obtained from surface and oblique net tows made during seven cruises, each along a comparable track in the entrance of the Gulf of California and each during a different month. Concomitant measurements of surface temperature, salinity, and zooplankton were made at each of the plankton stations. The catches of larval Auxis sp. were examined by analysis of variance techniques to determine which environmental features were associated with the spawning of this tuna as indicated by the distribution of larvae and to gain some insight into the behavior of the larvae themselves. The testing indicated that the spawning of Auxis sp. varied significantly among the different months of the cruises. The testing also indicated that if the larvae were capable of avoiding the sampling apparatus, this ability was not related to features associated with time of day such as light conditions. The analysis did not detect any change in the vertical distribution of the larvae among the months of the experiment. It was concluded that the larvae did not exhibit a diel vertical movement. The measurements of temperature, salinity, and zooplankton volumes were treated as covariates in the analysis. The surface temperature proved to be a highly important factor in explaining the distribution of larvae, but salinity and zooplankton volumes were not. Catches of Thunnus albaeares and Euthynnus lineatus were rare during the course of the study; these are discussed in qualitative terms with respect to the time of the year and the surface temperature. The distribution of larval tunas in the area of study was compared with the distribution of surface water masses. It appeared that these masses had no influence per se on the distribution of larvae. SPANISH: Este estudio está basado en las recolecciones de larvas de Thunnus albacares, Eutbynnus lineatus, y Auxis sp. obtenidas según los arrastres superficiales y oblicuos de la red, realizados durante siete cruceros, cada uno a la entrada del Golfo de California a lo largo de un derrotero comparable, y cada uno durante distintos meses. Las mediciones correspondientes de la temperatura superficial, salinidad y de zooplancton se realizaron en cada una de las estaciones de plancton. Las capturas de larvas Auxís sp. fueron examinadas mediante el análisis de la varianza para determinar cuales características ambientales se encontraban asociadas con el desove de este atún según lo indicaba la distribución de las larvas, y para obtener alguna idea del comportamiento de las larvas en sí mismas. Las pruebas indicaron que el desove de Auxis sp. varió significativamente entre los diferentes meses de los cruceros; indicaron también que si las larvas eran capaces de evitar el aparato de muestreo, esta habilidad no se relacionaba a las características asociadas con la hora del día de acuerdo a las condiciones de luz. El análisis no demostró ningún cambio en la distribución vertical de las larvas durante los meses del experimento. Se determinó que las larvas no exhiben un movimiento vertical diario. Las mediciones de temperatura, salinidad, y de los volúmenes de zooplancton fueron tratadas como covariables en el análisis. La temperatura superficial demostró ser un factor altamente importante en la explicación de la distribución de las larvas, pero la salinidad y los volúmenes de zooplancton no lo fueron. Las capturas de Thunnus albacares y Eutbynnus lineatus fueron pocas durante el curso de este estudio; éstas se discuten en términos cualitativos respecto a la época del año y a la temperatura superficial. La distribución de los atunes larvales en el área de estudio fue comparada con la distribución de las masas superficiales de agua. Parece que estas masas no tienen influencia per se en la distribución de las larvas. (PDF contains 40 pages.)
Resumo:
The Alliance for Coastal Technologies (ACT) convened a workshop, sponsored by the Hawaii-Pacific and Alaska Regional Partners, entitled Underwater Passive Acoustic Monitoring for Remote Regions at the Hawaii Institute of Marine Biology from February 7-9, 2007. The workshop was designed to summarize existing passive acoustic technologies and their uses, as well as to make strategic recommendations for future development and collaborative programs that use passive acoustic tools for scientific investigation and resource management. The workshop was attended by 29 people representing three sectors: research scientists, resource managers, and technology developers. The majority of passive acoustic tools are being developed by individual scientists for specific applications and few tools are available commercially. Most scientists are developing hydrophone-based systems to listen for species-specific information on fish or cetaceans; a few scientists are listening for biological indicators of ecosystem health. Resource managers are interested in passive acoustics primarily for vessel detection in remote protected areas and secondarily to obtain biological and ecological information. The military has been monitoring with hydrophones for decades;however, data and signal processing software has not been readily available to the scientific community, and future collaboration is greatly needed. The challenges that impede future development of passive acoustics are surmountable with greater collaboration. Hardware exists and is accessible; the limits are in the software and in the interpretation of sounds and their correlation with ecological events. Collaboration with the military and the private companies it contracts will assist scientists and managers with obtaining and developing software and data analysis tools. Collaborative proposals among scientists to receive larger pools of money for exploratory acoustic science will further develop the ability to correlate noise with ecological activities. The existing technologies and data analysis are adequate to meet resource managers' needs for vessel detection. However, collaboration is needed among resource managers to prepare large-scale programs that include centralized processing in an effort to address the lack of local capacity within management agencies to analyze and interpret the data. Workshop participants suggested that ACT might facilitate such collaborations through its website and by providing recommendations to key agencies and programs, such as DOD, NOAA, and I00s. There is a need to standardize data formats and archive acoustic environmental data at the national and international levels. Specifically, there is a need for local training and primers for public education, as well as by pilot demonstration projects, perhaps in conjunction with National Marine Sanctuaries. Passive acoustic technologies should be implemented immediately to address vessel monitoring needs. Ecological and health monitoring applications should be developed as vessel monitoring programs provide additional data and opportunities for more exploratory research. Passive acoustic monitoring should also be correlated with water quality monitoring to ease integration into long-term monitoring programs, such as the ocean observing systems. [PDF contains 52 pages]
Resumo:
A three day workshop on turbidity measurements was held at the Hawaii Institute of Marine Biology from August 3 1 to September 2, 2005. The workshop was attended by 30 participants from industry, coastal management agencies, and academic institutions. All groups recognized common issues regarding the definition of turbidity, limitations of consistent calibration, and the large variety of instrumentation that nominally measure "turbidity." The major recommendations, in order of importance for the coastal monitoring community are listed below: 1. The community of users in coastal ecosystems should tighten instrument design configurations to minimize inter-instrument variability, choosing a set of specifications that are best suited for coastal waters. The IS0 7027 design standard is not tight enough. Advice on these design criteria should be solicited through the ASTM as well as Federal and State regulatory agencies representing the majority of turbidity sensor end users. Parties interested in making turbidity measurements in coastal waters should develop design specifications for these water types rather than relying on design standards made for the analysis of drinking water. 2. The coastal observing groups should assemble a community database relating output of specific sensors to different environmental parameters, so that the entire community of users can benefit from shared information. This would include an unbiased, parallel study of different turbidity sensors, employing a variety of designs and configuration in the broadest range of coastal environments. 3. Turbidity should be used as a measure of relative change in water quality rather than an absolute measure of water quality. Thus, this is a recommendation for managers to develop their own local calibrations. See next recommendation. 4. If the end user specifically wants to use a turbidity sensor to measure a specific water quality parameter such as suspended particle concentration, then direct measurement of that water quality parameter is necessary to correlate with 'turbidity1 for a particular environment. These correlations, however, will be specific to the environment in which they are measured. This works because there are many environments in which water composition is relatively stable but varies in magnitude or concentration. (pdf contains 22 pages)
Resumo:
The distribution, abundance, age and growth, the food and feeding habits, condition factor and reproduction of Hepsetus odoe in the Epie Creek Floodplain (Nigeria) was studied. H. odoe occur in the creek, swamp channel and lake. It is a very common, abundant and one of the major commercial species. A total of 457 specimens weighing 76.90 kg were caught during the period of investigation. The catches were more abundant in the dry season than in the wet season. The total length ranged from 10 cm to 46 cm while the weight varied between 50 g and 900 g. Six distinct components or year classes were observed using Bhattacharya's method. A growth exponential value 'b' was 3.35 with condition factor, 'k' values ranging from 0.69 to 0.83. The main diets of Hepsetus odoe were fish, including crustaceans (shrimps) and insects. The mean fecundity was 6060 plus or minus 358 eggs (range 2,769 to 6.667 eggs). The ova diameter of H. odoe was found to range from 2.2 mm to 2.6 mm with overall mean = 2.4 plus or minus 0.1)
Resumo:
This study concentrated on the reproductive biology of the small pelagic cyprinid Rastrineobola argentea. The results indicate that this fish is an inshore spawning species, which agrees with other recent studies. It was also found that in areas where fishing intensity was likely to be relatively high, the size at first maturity of R. argentea was reduced, which is likely to be an effect of the fish altering its reproductive strategy according to life history theory. The CPUE results showed a general trend of decreasing with distance from shore, however areas less than one kilometer from the shore were not sampled. Evidence was also found suggesting that the cestode parasite, Ligula intestinalis had an adverse effect on the maturation and fecundity of R. argentea. Some management options concerning the findings in this study are also briefly discussed. (PDF has 82 pages)
Resumo:
A literature review of 50 titles including nearly all relevant publications ensures adequate basis on the present level of knowledge. The proposal includes (a) the determination of the biozoenosis and selected environmental factors, and (b) of fishery and stock data of the main fish and shellfish species. The ecological research studies physical and chemical variables of the estuarine waters (flow velocity and direction, water temperature, conductivity, pH, dissolved oxygen, salinity, nutrients such as ammonium, nitrite, phosphate, silicate, pollutants such as hybrocarbons, pesticides and heavy metals, biochemical oxygen demand, chemical oxygen demand), plankton (bacterio-phyto-and zooplankton), benthos, sediment. The fishery biological and fishery investigations include: number of villages and fishermen, number of boats and gears by type, length and weight data of the main fishery objects with concentration on the shrimps, species and numbers of fish parasites. The ecological variables were monitored at fixed stations on sections in the Cross-River Estuary, Calabar and Great Kwara Rivers two times per month during spring and neap tides. The fishery biological and fishery variables were obtained during spring and neap tide too. For the determination of the detailed methodology the ecological and fishery part of the progeamme should be started with frame surveys based on a larger number of stations. These frame surveys should be repeated from time to time. Both parts of the programme are based on three years duration. It seems already appropriate to continue the work with selected representative stations, villages and variables in form of a long-term data chain