972 resultados para Irrigation and drainage
Resumo:
Background: Candiduria is a hospital-associated infection and a daily problem in the intensive care unit. The treatment of asymptomatic candiduria is not well established and the use of amphotericin B bladder irrigation (ABBI) is controversial. The aim of this systematic review was to determine the best place for this therapy in practice. Methods: The databases searched in this study included MEDLINE, EMBASE, Web of Science, and LILACS (January 1960-June 2007). We included manuscripts with data on the treatment of candiduria using ABBI. The studies were classified as comparative, dose-finding, or non-comparative. Results: From 213 studies, nine articles (377 patients) met our inclusion criteria. ABBI showed a higher clearance of the candiduria 24 hours after the end of therapy than fluconazole (odds ratio (OR) 0.57, 95% confidence interval (CI) 0.32-1.00). Fungal culture 5 days after the end of both therapies showed a similar response (OR 1.51, 95% CI 0.81-2.80). The evaluation of ABBI using an intermittent or continuous system of delivery showed an early candiduria clearance (24 hours after therapy) of 80% and 82%, respectively (OR 0.87, 95% CI 0.52-1.36). Candiduria clearance at >5 days after the therapy showed a superior response using continuous bladder irrigation with amphotericin B (OR 0.52, 95% CI 0.29-0.94). The use of continuous ABBI for more than 5 days showed a better result (88% vs. 78%) than ABBI for less than 5 days, but without significance (OR 0.55, 95% CI 0.34-1.04). Conclusion: Although the strength of the results in the underlying literature is not sufficient to allow the drawing of definitive conclusions, ABBI appears to be as effective as fluconazole, but it does not offer systemic antifungal therapy and should only be used for asymptomatic candiduria. (C) 2008 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Resumo:
A review of spontaneous rupture in thin films with tangentially immobile interfaces is presented that emphasizes the theoretical developments of film drainage and corrugation growth through the linearization of lubrication theory in a cylindrical geometry. Spontaneous rupture occurs when corrugations from adjacent interfaces become unstable and grow to a critical thickness. A corrugated interface is composed of a number of waveforms and each waveform becomes unstable at a unique transition thickness. The onset of instability occurs at the maximum transition thickness, and it is shown that only upper and lower bounds of this thickness can be predicted from linear stability analysis. The upper bound is equivalent to the Freakel criterion and is obtained from the zeroth order approximation of the H-3 term in the evolution equation. This criterion is determined solely by the film radius, interfacial tension and Hamaker constant. The lower bound is obtained from the first order approximation of the H-3 term in the evolution equation and is dependent on the film thinning velocity A semi-empirical equation, referred to as the MTR equation, is obtained by combining the drainage theory of Manev et al. [J. Dispersion Sci. Technol., 18 (1997) 769] and the experimental measurements of Radoev et al. [J. Colloid Interface Sci. 95 (1983) 254] and is shown to provide accurate predictions of film thinning velocity near the critical thickness of rupture. The MTR equation permits the prediction of the lower bound of the maximum transition thickness based entirely on film radius, Plateau border radius, interfacial tension, temperature and Hamaker constant. The MTR equation extrapolates to Reynolds equation under conditions when the Plateau border pressure is small, which provides a lower bound for the maximum transition thickness that is equivalent to the criterion of Gumerman and Homsy [Chem. Eng. Commun. 2 (1975) 27]. The relative accuracy of either bound is thought to be dependent on the amplitude of the hydrodynamic corrugations, and a semiempirical correlation is also obtained that permits the amplitude to be calculated as a function of the upper and lower bound of the maximum transition thickness. The relationship between the evolving theoretical developments is demonstrated by three film thickness master curves, which reduce to simple analytical expressions under limiting conditions when the drainage pressure drop is controlled by either the Plateau border capillary pressure or the van der Waals disjoining pressure. The master curves simplify solution of the various theoretical predictions enormously over the entire range of the linear approximation. Finally, it is shown that when the Frenkel criterion is used to assess film stability, recent studies reach conclusions that are contrary to the relevance of spontaneous rupture as a cell-opening mechanism in foams. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Calcium-magnesium silicates improve the soil physicochemical properties and provide benefits to plant nutrition, since they are sources of silica, calcium and magnesium. The objective of this study was to evaluate the grain yield of irrigated corn fertilized with calcium-magnesium silicate. The experiment was carried out in a greenhouse in Campina Grande - PB, Brazil, using plastic pots containing 80 kg of soil. The treatments consisted of the combination of four irrigation depths, related to water replacement of 50, 75, 100 and 125% of the crop evapotranspiration, with fertilizer levels of 0, 82, 164 and 246 g of calcium-magnesium silicate, with three replications. The experimental design was in randomized blocks, with the irrigation depths distributed in bands while the silicon levels constituted the subplots. Corn yield was influenced by calcium-magnesium silicate and by irrigation depth, obtaining the greatest grain yield with the dose of 164 g pot-1 irrigated at the highest water level. The water-use efficiency of in corn production tended to decrease when the irrigation depth was increased. The best water-use efficiency was observed when the irrigation level was between 87 and 174 mm, and the dose of silicate was 164 g pot-1.
Resumo:
ABSTRACT The alternative technique of co-inoculation or mixed inoculation with symbiotic and non-symbiotic bacteria has been studied in leguminous plants. However, there are few field studies with common beans and under the influence of the amount of irrigated water. Thus, the objective of this study was to evaluate the efficiency of inoculation and co-inoculation of common beans with Rhizobium tropici and Azospirillum brasilense under two irrigation depths. The experiment was carried out in the winter of 2012 and 2013, in Selvíria, state of Mato Grosso do Sul. The experimental design was composed of randomized blocks in split-plot scheme with two irrigation depths in the plots (recommended for common beans and 75% of the recommended) and five forms of nitrogen (N) supply in the split-plots (control non-inoculated with 40 kg ha- 1 of N in topdressing, 80 kg ha- 1 of N in topdressing, A. brasilense inoculation with 40 kg ha-1 of N in topdressing, R. tropici inoculation with 40 kg ha-1 of N in topdressing, and co-inoculation of A. brasilense and R. tropici with 40 kg ha- 1 of N in topdressing) with four repetitions. Co-inoculation increased nodulation in the second year of cultivation. None of the evaluated treatments increased the grain yield in relation to non-inoculated control with 40 kg ha-1 of nitrogen in topdressing, which presented average yield of 2,200 kg ha-1. The use of 75% of the recommended irrigation depth provides similar grain yield to the recommended irrigation depth in common beans cropped in winter.
Resumo:
A relation between a rice irrigation system and mosquito breeding was established in a study undertaken at the Ribeira Valley Experimental Station, from January through December 1992. Flooding favoured Anopheles (Nyssorhynchus) and Culex (Melanoconion) species, while empty paddies condition were propitious to Aedes scapularis and Culex (Culex) species. Compared with a more primitive area of the same region, several species showed high a degree of adaptation to the anthropic environment. Among them, Anopheles albitarsis, a potential malaria vector that breeds in the irrigation system, has shown immature stage production thirteen times higher than at the natural breeding sites. In addition, Ae. scapularis, An. oswaldoi, Cx. bastagarius, and Cx. chidesteri presented high levels of synanthropy.
Resumo:
A study of adult Culicidae ecology was carried out from January 1992 through January 1993 at the rice irrigation system of the Ribeira Valley Experimental Station. The adaptation of Anopheles albitarsis to the anthropic environment became evident through the adult collections made at its various habitats represented by the irrigation system and the edge of the residual pond, as well as at those made within the local patchy residual woods. Other potential disease vectors were prevalent in the irrigated system too. There were Aedes scapularis, Culex nigripalpus and Cx. ribeirensis that were collected at various habitats. Remarkable differences among their prevalences were obtained such as between the natural forest and anthropic environments. In the former An. albitarsis was practically non-existent, thus suggesting that it might be considered as eusynathropic. As the populations of other species seemed to increase in the anthropic environment, they may be regarded as hemisynanthropes. Observations suggest the hypothesis that the development of irrigated land may be a factor in the emergence of An. albitarsis, and some other species, as well as the possibility of an increase in the transmission of mosquito-borne diseases such as malaria.
Resumo:
Irrigation schemes and dams have posed a great concern on public health systems of several countries, mainly in the tropics. The focus of the present review is to elucidate the different ways how these human interventions may have an effect on population dynamics of anopheline mosquitoes and hence, how local malaria transmission patterns may be changed. We discuss different studies within the three main tropical and sub-tropical regions (namely Africa, Asia and the Pacific and the Americas). Factors such as pre-human impact malaria epidemiological patterns, control measures, demographic movements, human behaviour and local Anopheles bionomics would determine if the implementation of an irrigation scheme or a dam will have negative effects on human health. Some examples of successful implementation of control measures in such settings are presented. The use of Geographic Information System as a powerful tool to assist on the study and control of malaria in these scenarios is also highlighted.
Resumo:
SUMMARY The aim of this work was to compare, from a parasitological ( Cryptosporidiumspp. and Giardia duodenalis), bacteriological (total and thermotolerants coliforms) and physicochemical perspective, water sources used for drinking and irrigation of vegetables intended to be sold for human consumption. From January 2010 to May 2011, samples of different water sources from vegetable producing properties were collected; 100 liters for parasitological analysis, 200 mL for bacteriological analysis, and five liters for physicochemical analysis. Water samples were filtered under vacuum with a kit containing a cellulose acetate membrane filter, 1.2 µm (Millipore(r), Barueri, SP, Brazil). The material retained on the membrane was mechanically extracted and analyzed by direct immunofluorescence (Merifluor(r)kit). From 20 rural properties investigated, 10 had artesian wells (40 samples), 10 had common wells (40 samples), and one had a mine (four samples), the latter contaminated by Cryptosporidiumspp. In samples from artesian wells, 90 to 130 meters depth, 42.5% were positive for total coliforms and 5.0% were identified to have abnormal coloration. From the samples of common wells, 14 to 37 meters depth, 87.5% were contaminated with total coliforms, 82.5% were positive for thermotolerant coliforms, and 12.5% had color abnormalities. We did not detect the presence of Giardiaspp. or Cryptosporidiumspp. in artesian and common wells. The use of artesian or common wells is an important step in the control of the spreading of zoonoses, particularly Cryptosporidiumspp. and Giardiaspp., as well as artesian wells for coliform control in local production of vegetables to be marketed.
Resumo:
BACKGROUND: Patients with resectable hilar cholangiocarcinoma often present obstructive jaundice and a small future remnant liver (FRL) ratio. A sequential approach comprising preoperative biliary drainage followed by portal vein embolization (PVE) is usually performed but leads to long preoperative management (6-12 weeks) before patients can undergo resection. To simplify and shorten this phase of liver preparation, we developed a new preoperative approach that involves percutaneous biliary drainage and PVE during the same procedure. We report the outcomes of this combined procedure. METHODS: During 1 year, four patients underwent simultaneous biliary drainage and PVE followed 1 month later by surgical resection of hilar cholangiocarcinoma. Liver volumes were assessed by CT before, and 1, and 3 months after the combined procedure. Serum liver enzymes were assessed before and 1 month after the combined procedure. RESULTS: The combined procedure was feasible in all cases, with no related complications. After the combined procedure, transaminases remained stable or decreased, whereas gamma-glutamyl-transpeptidase, alkaline phosphatase, and bilirubin decreased. During the first month, the left lobe volume increased by +27.9 % (range 19-40.9 %). The FRL ratio increased from 24.9 to 33.2 %. All patients underwent R0 liver resection with a favorable postoperative outcome. The remnant liver volume increased by +132 % (range 78-245 %) between 1 and 3 months. CONCLUSIONS: Simultaneous percutaneous biliary drainage and PVE is feasible. This all-in-one preoperative approach greatly decreases waiting time until surgical resection. These encouraging results warrant further investigation to confirm the safety and to evaluate the reduction in the dropout rate for liver resection in this tumor with poor prognosis.
Resumo:
In the ornamental plant production region of Girona (Spain), which is one of the largest of its kind in southern Europe, most of the surface is irrigated using wide blocked-end furrows. The objectives of this paper were: (1) to evaluate the irrigation scheduling methods used by ornamental plant producers; (2) to analyse different scenarios inorder to assess how they affect irrigation performance; (3) to evaluate the risk of deep percolation; and (4) to calculategross water productivity. A two-year study in a representative commercial field, planted with Prunus cerasifera ‘Nigra’, was carried out. The irrigation dose applied by the farmers was slightly smaller than the required water dose estimated by the use of two different methods: the first based on soil water content, and the second based on evapotranspiration. Distribution uniformity and application efficiency were high, with mean values above 87%. Soil water contentmeasurements revealed that even at the end of the furrow, where the infiltrated water depth was greatest, more than 90% of the infiltrated water was retained in the shallowest 40 cm of the soil; accordingly, the risk of water loss due to deep percolation was minimal. Gross water productivity for ornamental tree production was € 11.70 m–3, approximately 20 times higher than that obtained with maize in the same region
Reorganization of a deeply incised drainage: role of deformation, sedimentation and groundwater flow
Resumo:
Deeply incised drainage networks are thought to be robust and not easily modified, and are commonly used as passive markers of horizontal strain. Yet, reorganizations (rearrangements) appear in the geologic record. We provide field evidence of the reorganization of a Miocene drainage network in response to strike-slip and vertical displacements in Guatemala. The drainage was deeply incised into a 50-km-wide orogen located along the North America-Caribbean plate boundary. It rearranged twice, first during the Late Miocene in response to transpressional uplift along the Polochic fault, and again in the Quaternary in response to transtensional uplift along secondary faults. The pattern of reorganization resembles that produced by the tectonic defeat of rivers that cross growing tectonic structures. Compilation of remote sensing data, field mapping, sediment provenance study, grain-size analysis and Ar(40)/Ar(39) dating from paleovalleys and their fill reveals that the classic mechanisms of river diversion, such as river avulsion over bedrock, or capture driven by surface runoff, are not sufficient to produce the observed diversions. The sites of diversion coincide spatially with limestone belts and reactivated fault zones, suggesting that solution-triggered or deformation-triggered permeability have helped breaching of interfluves. The diversions are also related temporally and spatially to the accumulation of sediment fills in the valleys, upstream of the rising structures. We infer that the breaching of the interfluves was achieved by headward erosion along tributaries fed by groundwater flow tracking from the valleys soon to be captured. Fault zones and limestone belts provided the pathways, and the aquifers occupying the valley fills provided the head pressure that enhanced groundwater circulation. The defeat of rivers crossing the rising structures results essentially from the tectonically enhanced activation of groundwater flow between catchments.
Resumo:
The aim of our survey was to assess the effect of irrigation water of the microbiological quality on the production chain of lettuce in the Dakar area. Microbiological analysis showed that 35% of irrigation water was contaminated by Salmonella spp. between the two water-types used for irrigation (groundwater and wastewater), no significant difference (p>0.05) in their degree of contamination was found. The incidence of different types of irrigation water on the contamination rate of lettuces from the farm (Pikine and Patte d'Oie) was not different either (p>0.05). However, the contamination rate of lettuce from markets of Dalifort and Grand-Yoff that were supplied by the area of Patte d'Oie was greater than those of Sham and Zinc supplied by Pikine (p<0.05). Comparison of serotypes of Salmonella isolated from irrigation water and lettuce showed that irrigation water may affect the microbiological quality of lettuce. Manures, frequently used as organic amendment in cultivating lettuce are another potential source of contamination. These results showed that lettuce may constitute effective vectors for the transmission of pathogens to consumers. Extensive treatment of the used wastewater and/or composting of manure could considerably reduce these risks.
Resumo:
The number of private gardens has increased in recent years, creating a more pleasant urban model, but not without having an environmental impact, including increased energy consumption, which is the focus of this study. The estimation of costs and energy consumption for the generic typology of private urban gardens is based on two simplifying assumptions: square geometry with surface areas from 25 to 500 m2 and hydraulic design with a single pipe. In total, eight sprinkler models have been considered, along with their possible working pressures, and 31 pumping units grouped into 5 series that adequately cover the range of required flow rates and pressures, resultin in 495 hydraulic designs repeated for two climatically different locations in the Spanish Mediterranean area (Girona and Elche). Mean total irrigation costs for the locality with lower water needs (Girona) and greater needs (Elche) were € 2,974 ha-¹ yr-¹ and € 3,383 ha-¹ yr-¹, respectively. Energy costs accounted for 11.4% of the total cost for the first location, and 23.0% for the second. While a suitable choice of the hydraulic elements of the setup is essential, as it may provide average energy savings of 77%, due to the low energy cost in relation to the cost of installation, the potential energy savings do not constitute a significant incentive for the irrigation system design. The low efficiency of the pumping units used in this type of garden is the biggest obstacle and constraint to achieving a high quality energy solution