896 resultados para Invertebrate availability
Resumo:
“Catch,” a state where some invertebrate muscles sustain high tension over long periods of time with little energy expenditure (low ATP hydrolysis rate) is similar to the “latch” state of vertebrate smooth muscles. Its induction and release involve Ca2+-dependent phosphatase and cAMP-dependent protein kinase, respectively. Molecular mechanisms for catch remain obscure. Here, we describe a quantitative microscopic in vitro assay reconstituting the catch state with proteins isolated from catch muscles. Thick filaments attached to glass coverslips and pretreated with ≈10−4 M free Ca2+ and soluble muscle proteins bound fluorescently labeled native thin filaments tightly in catch at ≈10−8 M free Ca2+ in the presence of MgATP. At ≈10−4 M free Ca2+, the thin filaments moved at ≈4 μm/s. Addition of cAMP and cAMP-dependent protein kinase at ≈10−8 M free Ca2+ caused their release. Rabbit skeletal muscle F-actin filaments completely reproduced the results obtained with native thin filaments. Binding forces >500 pN/μm between thick and F-actin filaments were measured by glass microneedles, and were sufficient to explain catch tension in vivo. Synthetic filaments of purified myosin and twitchin bound F-actin in catch, showing that other components of native thick filaments such as paramyosin and catchin are not essential. The binding between synthetic thick filaments and F-actin filaments depended on phosphorylation of twitchin but not of myosin. Cosedimentation experiments showed that twitchin did not bind directly to F-actin in catch. These results show that catch is a direct actomyosin interaction regulated by twitchin phosphorylation.
Resumo:
Polyethylene glycol (PEG), which is often used to impose low water potentials (ψw) in solution culture, decreases O2 movement by increasing solution viscosity. We investigated whether this property causes O2 deficiency that affects the elongation or metabolism of maize (Zea mays L.) primary roots. Seedlings grown in vigorously aerated PEG solutions at ambient solution O2 partial pressure (pO2) had decreased steady-state root elongation rates, increased root-tip alanine concentrations, and decreased root-tip proline concentrations relative to seedlings grown in PEG solutions of above-ambient pO2 (alanine and proline accumulation are responses to hypoxia and low ψw, respectively). Measurements of root pO2 were made using an O2 microsensor to ensure that increased solution pO2 did not increase root pO2 above physiological levels. In oxygenated PEG solutions that gave maximal root elongation rates, root pO2 was similar to or less than (depending on depth in the tissue) pO2 of roots growing in vermiculite at the same ψw. Even without PEG, high solution pO2 was necessary to raise root pO2 to the levels found in vermiculite-grown roots. Vermiculite was used for comparison because it has large air spaces that allow free movement of O2 to the root surface. The results show that supplemental oxygenation is required to avoid hypoxia in PEG solutions. Also, the data suggest that the O2 demand of the root elongation zone may be greater at low relative to high ψw, compounding the effect of PEG on O2 supply. Under O2-sufficient conditions root elongation was substantially less sensitive to the low ψw imposed by PEG than that imposed by dry vermiculite.
Resumo:
We have used a transgenic cell line of Catharanthus roseus (L.) G. Don to study the relative importance of the supply of biosynthetic precursors for the synthesis of terpenoid indole alkaloids. Line S10 carries a recombinant, constitutively overexpressed version of the endogenous strictosidine synthase (Str) gene. Various concentrations and combinations of the substrate tryptamine and of loganin, the immediate precursor of secologanin, were added to suspension cultures of S10. Our results indicate that high rates of tryptamine synthesis can take place under conditions of low tryptophan decarboxylase activity, and that high rates of strictosidine synthesis are possible in the presence of a small tryptamine pool. It appears that the utilization of tryptamine for alkaloid biosynthesis enhances metabolic flux through the indole pathway. However, a deficiency in the supply of either the iridoid or the indole precursor can limit flux through the step catalyzed by strictosidine synthase. Precursor utilization for the synthesis of strictosidine depends on the availability of the cosubstrate; the relative abundance of these precursors is a cell-line-specific trait that reflects the metabolic status of the cultures.
Resumo:
The sudden appearance of calcified skeletons among many different invertebrate taxa at the Precambrian-Cambrian transition may have required minor reorganization of preexisting secretory functions. In particular, features of the skeletal organic matrix responsible for regulating crystal growth by inhibition may be derived from mucous epithelial excretions. The latter would have prevented spontaneous calcium carbonate overcrusting of soft tissues exposed to the highly supersaturated Late Proterozoic ocean [Knoll, A. H., Fairchild, I. J. & Swett, K. (1993) Palaios 8, 512-525], a putative function for which we propose the term "anticalcification." We tested this hypothesis by comparing the serological properties of skeletal water-soluble matrices and mucous excretions of three invertebrates--the scleractinian coral Galaxea fascicularis and the bivalve molluscs Mytilus edulis and Mercenaria mercenaria. Crossreactivities recorded between muci and skeletal water-soluble matrices suggest that these different secretory products have a high degree of homology. Furthermore, freshly extracted muci of Mytilus were found to inhibit calcium carbonate precipitation in solution.
Resumo:
We describe a nonpeptide mimetic analog of an invertebrate peptide receptor. Benzethonium chloride (Bztc) is an agonist of the SchistoFLRFamide (PDVDHVFLRFamide) receptors found on locust oviducts. Bztc competitively displaces [125I-labeled Y1]SchistoFLRFamide binding to both high- and low-affinity receptors of membrane preparations. Bztc mimics the physiological effects of SchistoFLRFamide on locust oviduct, by inhibiting myogenic and induced contractions in a dose-dependent manner. Bztc is therefore recognized by the binding and activation regions of the SchistoFLRFamide receptors. This discovery provides a unique opportunity within insects to finally target a peptide receptor for the development of future pest management strategies.
Resumo:
Learning is widely thought to result from altered potency of synapses within the neural pathways that mediate the learned behavior. Support for this belief, which pervades current physiological and computational thinking, comes especially from the analysis of cases of simple learning in invertebrates. Here, evidence is presented that in one such case, habituation of crayfish escape, the learning is more due to onset of tonic descending inhibition than to the intrinsic depression of circuit synapses to which it was previously attributed. Thus, the altered performance seems to depend at least as much on events in higher centers as on local plasticity.
Resumo:
Heavy metal contamination and drought are expected to increase in large areas worldwide. However, their combined effect on plant performance has been scantly analyzed. This study examines the effect of Zn supply at different water availabilities on morpho-physiological traits of Quercus suber L. in order to analyze the combined effects of both stresses. Seedlings were treated with four levels of zinc from 3 to 150 µM and exposed to low watering (LW) or high watering (HW) frequency in hydroponic culture, using a growth chamber. Under both watering regimes, Zn concentration in leaves and roots increased with Zn increment in nutrient solution. Nevertheless, at the highest Zn doses, Zn tissue concentrations were almost twice in HW than in LW seedlings. Functional traits as leaf photosynthetic rate and root hydraulic conductivity, and morphological traits as root length and root biomass decreased significantly in response to Zn supply. Auxin levels increased with Zn concentrations, suggesting the involvement of this phytohormone in the seedling response to this element. LW seedlings exposed to 150 µM Zn showed higher root length and root biomass than HW seedlings exposed to the same Zn dose. Our results suggest that low water availability could mitigate Zn toxicity by limiting internal accumulation. Morphological traits involved in the response to both stresses probably contributed to this response.
Resumo:
Introduction: Since 2008, Spain has been in the throes of an economic crisis. This recession particularly affects the living conditions of vulnerable populations, and has also led to a reversal in social policies and a reduction in resources. In this context, the aim of this study was to explore intimate partner violence (IPV) service providers’ perceptions of the impact of the current economic crisis on these resources in Spain and on their capacity to respond to immigrant women’s needs experiencing IPV. Methods: A qualitative study was performed based on 43 semi-structured in-depth interviews to social workers, psychologists, intercultural mediators, judges, lawyers, police officers and health professionals from different services dealing with IPV (both, public and NGO’s) and cities in Spain (Barcelona, Madrid, Valencia and Alicante) in 2011. Transcripts were imported into qualitative analysis software (Atlas.ti), and analysed using qualitative content analysis. Results: We identified four categories related to the perceived impact of the current economic crisis: a) “Immigrant women have it harder now”, b) “IPV and immigration resources are the first in line for cuts”, c) “ Fewer staff means a less effective service” and d) “Equality and IPV policies are no longer a government priority”. A cross-cutting theme emerged from these categories: immigrant women are triply affected; by IPV, by the crisis, and by structural violence. Conclusion: The professionals interviewed felt that present resources in Spain are insufficient to meet the needs of immigrant women, and that the situation might worsen in the future.
Resumo:
Reforestation projects in semiarid lands often yield poor results. Water scarcity, poor soil fertility, and structure strongly limit the survival and growth of planted seedlings in these areas. At two experimental semiarid sites, we evaluated a variety of low-cost planting techniques in order to increase water availability to plants. Treatments included various combinations of traditional planting holes; water-harvesting microcatchments; stone or plastic mulches; small waterproof sheets to increase water harvesting; dry wells; buried clay pots; and deep irrigation. Some of these treatments were also combined with addition of composted biosolids. Waterproof sheets significantly enhanced water harvesting (43%) and soil moisture in the planting hole (40%), especially for low-intensity rainfall events. Treatment effects on the survival and growth of Olea europaea seedlings varied between experimental sites. At the most water-limited site, clay pots, and dry wells improved seedling survival, while no treatment enhanced seedling growth. At the least water-stressed site, the application of composted sludge significantly improved seedling growth. We conclude that nutrient-mediated stress is subordinate to water stress in arid and semiarid environments, and we suggest modifications on the microsite scale to address these limiting conditions in Mediterranean drylands.
Resumo:
The haloarchaeon Haloferax mediterranei is able to grow in the presence of different inorganic and organic nitrogen sources by means of the assimilatory pathway under aerobic conditions. In order to identify genes of potential importance in nitrogen metabolism and its regulation in the halophilic microorganism, we have analysed its global gene expression in three culture media with different nitrogen sources: (a) cells were grown stationary and exponentially in ammonium, (b) cells were grown exponentially in nitrate, and (c) cells were shifted to nitrogen starvation conditions. The main differences in the transcriptional profiles have been identified between the cultures with ammonium as nitrogen source and the cultures with nitrate or nitrogen starvation, supporting previous results which indicate the absence of ammonium as the factor responsible for the expression of genes involved in nitrate assimilation pathway. The results have also permitted the identification of transcriptional regulators and changes in metabolic pathways related to the catabolism and anabolism of amino acids or nucleotides. The microarray data was validated by real-time quantitative PCR on 4 selected genes involved in nitrogen metabolism. This work represents the first transcriptional profiles study related to nitrogen assimilation metabolism in extreme halophilic microorganisms using microarray technology.
Resumo:
no.9(1927)