867 resultados para Intrusion Detection System (IDS)
Resumo:
Introduction Herpes simplex virus (HSV) and varicella zoster virus (VZV) are responsible for a variety of human diseases, including central nervous system diseases. The use of polymerase chain reaction (PCR) techniques on cerebrospinal fluid samples has allowed the detection of viral DNA with high sensitivity and specificity. Methods Serial dilutions of quantified commercial controls of each virus were subjected to an in-house nested-PCR technique. Results The minimum detection limits for HSV and VZV were 5 and 10 copies/µL, respectively. Conclusions The detection limit of nested-PCR for HSV and VZV in this study was similar to the limits found in previous studies.
Resumo:
Abstract: INTRODUCTION : Molecular analyses are auxiliary tools for detecting Koch's bacilli in clinical specimens from patients with suspected tuberculosis (TB). However, there are still no efficient diagnostic tests that combine high sensitivity and specificity and yield rapid results in the detection of TB. This study evaluated single-tube nested polymerase chain reaction (STNPCR) as a molecular diagnostic test with low risk of cross contamination for detecting Mycobacterium tuberculosis in clinical samples. METHODS: Mycobacterium tuberculosis deoxyribonucleic acid (DNA) was detected in blood and urine samples by STNPCR followed by agarose gel electrophoresis. In this system, reaction tubes were not opened between the two stages of PCR (simple and nested). RESULTS: STNPCR demonstrated good accuracy in clinical samples with no cross contamination between microtubes. Sensitivity in blood and urine, analyzed in parallel, was 35%-62% for pulmonary and 41%-72% for extrapulmonary TB. The specificity of STNPCR was 100% in most analyses, depending on the type of clinical sample (blood or urine) and clinical form of disease (pulmonary or extrapulmonary). CONCLUSIONS: STNPCR was effective in detecting TB, especially the extrapulmonary form for which sensitivity was higher, and had the advantage of less invasive sample collection from patients for whom a spontaneous sputum sample was unavailable. With low risk of cross contamination, the STNPCR can be used as an adjunct to conventional methods for diagnosing TB.
Resumo:
The EM3E Master is an Education Programme supported by the European Commission, the European Membrane Society (EMS), the European Membrane House (EMH), and a large international network of industrial companies, research centres and universities (http://www.em3e.eu)
Resumo:
"Lecture notes in computational vision and biomechanics series, ISSN 2212-9391, vol. 19"
Resumo:
Vision-based hand gesture recognition is an area of active current research in computer vision and machine learning. Being a natural way of human interaction, it is an area where many researchers are working on, with the goal of making human computer interaction (HCI) easier and natural, without the need for any extra devices. So, the primary goal of gesture recognition research is to create systems, which can identify specific human gestures and use them, for example, to convey information. For that, vision-based hand gesture interfaces require fast and extremely robust hand detection, and gesture recognition in real time. Hand gestures are a powerful human communication modality with lots of potential applications and in this context we have sign language recognition, the communication method of deaf people. Sign lan- guages are not standard and universal and the grammars differ from country to coun- try. In this paper, a real-time system able to interpret the Portuguese Sign Language is presented and described. Experiments showed that the system was able to reliably recognize the vowels in real-time, with an accuracy of 99.4% with one dataset of fea- tures and an accuracy of 99.6% with a second dataset of features. Although the im- plemented solution was only trained to recognize the vowels, it is easily extended to recognize the rest of the alphabet, being a solid foundation for the development of any vision-based sign language recognition user interface system.
Resumo:
In this paper, we present an integrated system for real-time automatic detection of human actions from video. The proposed approach uses the boundary of humans as the main feature for recognizing actions. Background subtraction is performed using Gaussian mixture model. Then, features are extracted from silhouettes and Vector Quantization is used to map features into symbols (bag of words approach). Finally, actions are detected using the Hidden Markov Model. The proposed system was validated using a newly collected real- world dataset. The obtained results show that the system is capable of achieving robust human detection, in both indoor and outdoor environments. Moreover, promising classification results were achieved when detecting two basic human actions: walking and sitting.
Resumo:
Schizophrenia stands for a long-lasting state of mental uncertainty that may bring to an end the relation among behavior, thought, and emotion; that is, it may lead to unreliable perception, not suitable actions and feelings, and a sense of mental fragmentation. Indeed, its diagnosis is done over a large period of time; continuos signs of the disturbance persist for at least 6 (six) months. Once detected, the psychiatrist diagnosis is made through the clinical interview and a series of psychic tests, addressed mainly to avoid the diagnosis of other mental states or diseases. Undeniably, the main problem with identifying schizophrenia is the difficulty to distinguish its symptoms from those associated to different untidiness or roles. Therefore, this work will focus on the development of a diagnostic support system, in terms of its knowledge representation and reasoning procedures, based on a blended of Logic Programming and Artificial Neural Networks approaches to computing, taking advantage of a novel approach to knowledge representation and reasoning, which aims to solve the problems associated in the handling (i.e., to stand for and reason) of defective information.
Resumo:
About 90% of breast cancers do not cause or are capable of producing death if detected at an early stage and treated properly. Indeed, it is still not known a specific cause for the illness. It may be not only a beginning, but also a set of associations that will determine the onset of the disease. Undeniably, there are some factors that seem to be associated with the boosted risk of the malady. Pondering the present study, different breast cancer risk assessment models where considered. It is our intention to develop a hybrid decision support system under a formal framework based on Logic Programming for knowledge representation and reasoning, complemented with an approach to computing centered on Artificial Neural Networks, to evaluate the risk of developing breast cancer and the respective Degree-of-Confidence that one has on such a happening.
Resumo:
Environmental contamination with Mycobacterium tuberculosis complex (MTC) has been considered crucial for bovine tuberculosis persistence in multi-host-pathogen systems. However, MTC contamination has been difficult to detect due to methodological issues. In an attempt to overcome this limitation we developed an improved protocol for the detection of MTC DNA. MTC DNA concentration was estimated by the Most Probable Number (MPN) method. Making use of this protocol we showed that MTC contamination is widespread in different types of environmental samples from the Iberian Peninsula, which supports indirect transmission as a contributing mechanism for the maintenance of bovine tuberculosis in this multi-host-pathogen system. The proportion of MTC DNA positive samples was higher in the bovine tuberculosis-infected than in presumed negative area (0.32 and 0.18, respectively). Detection varied with the type of environmental sample and was more frequent in sediment from dams and less frequent in water also from dams (0.22 and 0.05, respectively). The proportion of MTC-positive samples was significantly higher in spring (p<0.001), but MTC DNA concentration per sample was higher in autumn and lower in summer. The average MTC DNA concentration in positive samples was 0.82 MPN/g (CI95 0.70-0.98 MPN/g). We were further able to amplify a DNA sequence specific of Mycobacterium bovis/caprae in 4 environmental samples from the bTB-infected area.
Resumo:
Tese de Doutoramento em Engenharia de Eletrónica e de Computadores
Resumo:
Tese de Doutoramento (Programa Doutoral em Engenharia Biomédica)
Resumo:
The MAP-i Doctoral Programme in Informatics, of the Universities of Minho, Aveiro and Porto
Resumo:
"Series: Solid mechanics and its applications, vol. 226"
Resumo:
Transmission of Cherenkov light through the atmosphere is strongly influenced by the optical clarity of the atmosphere and the prevailing weather conditions. The performance of telescopes measuring this light is therefore dependent on atmospheric effects. This thesis presents software and hardware developed to implement a prototype sky monitoring system for use on the proposed next-generation gamma-ray telescope array, VERITAS. The system, consisting of a CCD camera and a far-infrared pyrometer, was successfully installed and tested on the ten metre atmospheric Cherenkov imaging telescope operated by the VERITAS Collaboration at the F.L. Whipple Observatory in Arizona. The thesis also presents the results of observations of the BL Lacertae object, 1ES1959+650, made with the Whipple ten metre telescope. The observations provide evidence for TeV gamma-ray emission from the BL Lacertae object, 1ES1959+650, at a level of more than 15 standard deviations above background. This represents the first unequivocal detection of this object at TeV energies, making it only the third extragalactic source seen at such levels of significance in this energy range. The flux variability of the source on a number of timescales is also investigated.
Resumo:
This project was funded under the Applied Research Grants Scheme administered by Enterprise Ireland. The project was a partnership between Galway - Mayo Institute of Technology and an industrial company, Tyco/Mallinckrodt Galway. The project aimed to develop a semi - automatic, self - learning pattern recognition system capable of detecting defects on the printed circuits boards such as component vacancy, component misalignment, component orientation, component error, and component weld. The research was conducted in three directions: image acquisition, image filtering/recognition and software development. Image acquisition studied the process of forming and digitizing images and some fundamental aspects regarding the human visual perception. The importance of choosing the right camera and illumination system for a certain type of problem has been highlighted. Probably the most important step towards image recognition is image filtering, The filters are used to correct and enhance images in order to prepare them for recognition. Convolution, histogram equalisation, filters based on Boolean mathematics, noise reduction, edge detection, geometrical filters, cross-correlation filters and image compression are some examples of the filters that have been studied and successfully implemented in the software application. The software application developed during the research is customized in order to meet the requirements of the industrial partner. The application is able to analyze pictures, perform the filtering, build libraries, process images and generate log files. It incorporates most of the filters studied and together with the illumination system and the camera it provides a fully integrated framework able to analyze defects on printed circuit boards.