845 resultados para Interval Variable
Resumo:
The redistribution of a finite amount of martian surface dust during global dust storms and in the intervening periods has been modelled in a dust lifting version of the UK Mars General Circulation Model. When using a constant, uniform threshold in the model’s wind stress lifting parameterisation and assuming an unlimited supply of surface dust, multiannual simulations displayed some variability in dust lifting activity from year to year, arising from internal variability manifested in surface wind stress, but dust storms were limited in size and formed within a relatively short seasonal window. Lifting thresholds were then allowed to vary at each model gridpoint, dependent on the rates of emission or deposition of dust. This enhanced interannual variability in dust storm magnitude and timing, such that model storms covered most of the observed ranges in size and initiation date within a single multiannual simulation. Peak storm magnitude in a given year was primarily determined by the availability of surface dust at a number of key sites in the southern hemisphere. The observed global dust storm (GDS) frequency of roughly one in every 3 years was approximately reproduced, but the model failed to generate these GDSs spontaneously in the southern hemisphere, where they have typically been observed to initiate. After several years of simulation, the surface threshold field—a proxy for net change in surface dust density—showed good qualitative agreement with the observed pattern of martian surface dust cover. The model produced a net northward cross-equatorial dust mass flux, which necessitated the addition of an artificial threshold decrease rate in order to allow the continued generation of dust storms over the course of a multiannual simulation. At standard model resolution, for the southward mass flux due to cross-equatorial flushing storms to offset the northward flux due to GDSs on a timescale of ∼3 years would require an increase in the former by a factor of 3–4. Results at higher model resolution and uncertainties in dust vertical profiles mean that quasi-periodic redistribution of dust on such a timescale nevertheless appears to be a plausible explanation for the observed GDS frequency.
Resumo:
What are the precise brain regions supporting the short-term retention of verbal information? A previous functional magnetic resonance imaging (fMRI) study suggested that they may be topographically variable across individuals, occurring, in most, in regions posterior to prefrontal cortex (PFC), and that detection of these regions may be best suited to a single-subject (SS) approach to fMRI analysis (Feredoes and Postle, 2007). In contrast, other studies using spatially normalized group-averaged (SNGA) analyses have localized storage-related activity to PFC. To evaluate the necessity of the regions identified by these two methods, we applied repetitive transcranial magnetic stimulation (rTMS) to SS- and SNGA-identified regions throughout the retention period of a delayed letter-recognition task. Results indicated that rTMS targeting SS analysis-identified regions of left perisylvian and sensorimotor cortex impaired performance, whereas rTMS targeting the SNGA-identified region of left caudal PFC had no effect on performance. Our results support the view that the short-term retention of verbal information can be supported by regions associated with acoustic, lexical, phonological, and speech-based representation of information. They also suggest that the brain bases of some cognitive functions may be better detected by SS than by SNGA approaches to fMRI data analysis.
Resumo:
Although early modern acting companies were adept at using different kinds of venue, performing indoors imposed a significant change in practice. Since indoor theatres required artificial lighting to augment the natural light admitted via windows, candles were employed; but the technology was such that candles could not last untended throughout an entire performance. Performing indoors thus introduced a new component into stage practice: the interval. This article explores what extant evidence (such as it is) might tell us about the introduction of act breaks, how they may have worked, and the implications for actors, audiences and dramatists. Ben Jonson's scripting of the interval in two late plays, The Staple of News and The Magnetic Lady, is examined for what it may suggest about actual practice, and the ways in which the interval may have been considered integral to composition and performance is explored through a reading of Middleton and Rowley's The Changeling. The interval offered playwrights a form of structural punctuation, drawing attention to how acts ended and began; actors could use the space to bring on props for use in the next act; spectators might use the pause between acts to reflect on what had happened and, perhaps, anticipate what was to come; and stage-sitters, the evidence indicates, often took advantage of the hiatus in the play to assert their presence in the space to which all eyes naturally were drawn.
Resumo:
The link between the Pacific/North American pattern (PNA) and the North Atlantic Oscillation (NAO) is investigated in reanalysis data (NCEP, ERA40) and multi-century CGCM runs for present day climate using three versions of the ECHAM model. PNA and NAO patterns and indices are determined via rotated principal component analysis on monthly mean 500 hPa geopotential height fields using the varimax criteria. On average, the multi-century CGCM simulations show a significant anti-correlation between PNA and NAO. Further, multi-decadal periods with significantly enhanced (high anti-correlation, active phase) or weakened (low correlations, inactive phase) coupling are found in all CGCMs. In the simulated active phases, the storm track activity near Newfoundland has a stronger link with the PNA variability than during the inactive phases. On average, the reanalysis datasets show no significant anti-correlation between PNA and NAO indices, but during the sub-period 1973–1994 a significant anti-correlation is detected, suggesting that the present climate could correspond to an inactive period as detected in the CGCMs. An analysis of possible physical mechanisms suggests that the link between the patterns is established by the baroclinic waves forming the North Atlantic storm track. The geopotential height anomalies associated with negative PNA phases induce an increased advection of warm and moist air from the Gulf of Mexico and cold air from Canada. Both types of advection contribute to increase baroclinicity over eastern North America and also to increase the low level latent heat content of the warm air masses. Thus, growth conditions for eddies at the entrance of the North Atlantic storm track are enhanced. Considering the average temporal development during winter for the CGCM, results show an enhanced Newfoundland storm track maximum in the early winter for negative PNA, followed by a downstream enhancement of the Atlantic storm track in the subsequent months. In active (passive) phases, this seasonal development is enhanced (suppressed). As the storm track over the central and eastern Atlantic is closely related to the NAO variability, this development can be explained by the shift of the NAO index to more positive values.
Resumo:
The relative contributions of five variables (Stereoscopy, screen size, field of view, level of realism and level of detail) of virtual reality systems on spatial comprehension and presence are evaluated here. Using a variable-centered approach instead of an object-centric view as its theoretical basis, the contributions of these five variables and their two-way interactions are estimated through a 25-1 fractional factorial experiment (screening design) of resolution V with 84 subjects. The experiment design, procedure, measures used, creation of scales and indices, results of statistical analysis, their meaning and agenda for future research are elaborated.
Resumo:
It is often assumed that humans generate a 3D reconstruction of the environment, either in egocentric or world-based coordinates, but the steps involved are unknown. Here, we propose two reconstruction-based models, evaluated using data from two tasks in immersive virtual reality. We model the observer’s prediction of landmark location based on standard photogrammetric methods and then combine location predictions to compute likelihood maps of navigation behaviour. In one model, each scene point is treated independently in the reconstruction; in the other, the pertinent variable is the spatial relationship between pairs of points. Participants viewed a simple environment from one location, were transported (virtually) to another part of the scene and were asked to navigate back. Error distributions varied substantially with changes in scene layout; we compared these directly with the likelihood maps to quantify the success of the models. We also measured error distributions when participants manipulated the location of a landmark to match the preceding interval, providing a direct test of the landmark-location stage of the navigation models. Models such as this, which start with scenes and end with a probabilistic prediction of behaviour, are likely to be increasingly useful for understanding 3D vision.
Resumo:
We present simultaneous multicolor infrared and optical photometry of the black hole X-ray transient XTE J1118+480 during its short 2005 January outburst, supported by simultaneous X-ray observations. The variability is dominated by short timescales, ~10 s, although a weak superhump also appears to be present in the optical. The optical rapid variations, at least, are well correlated with those in X-rays. Infrared JHKs photometry, as in the previous outburst, exhibits especially large-amplitude variability. The spectral energy distribution (SED) of the variable infrared component can be fitted with a power law of slope α=-0.78+/-0.07, where F_ν~ν^α. There is no compelling evidence for evolution in the slope over five nights, during which time the source brightness decayed along almost the same track as seen in variations within the nights. We conclude that both short-term variability and longer timescale fading are dominated by a single component of constant spectral shape. We cannot fit the SED of the IR variability with a credible thermal component, either optically thick or thin. This IR SED is, however, approximately consistent with optically thin synchrotron emission from a jet. These observations therefore provide indirect evidence to support jet-dominated models for XTE J1118+480 and also provide a direct measurement of the slope of the optically thin emission, which is impossible, based on the average spectral energy distribution alone.
Resumo:
The question of what explains variation in expenditures on Active Labour Market Programs (ALMPs) has attracted significant scholarship in recent years. Significant insights have been gained with respect to the role of employers, unions and dual labour markets, openness, and partisanship. However, there remain significant disagreements with respects to key explanatory variables such the role of unions or the impact of partisanship. Qualitative studies have shown that there are both good conceptual reasons as well as historical evidence that different ALMPs are driven by different dynamics. There is little reason to believe that vastly different programs such as training and employment subsidies are driven by similar structural, interest group or indeed partisan dynamics. The question is therefore whether different ALMPs have the same correlation with different key explanatory variables identified in the literature? Using regression analysis, this paper shows that the explanatory variables identified by the literature have different relation to distinct ALMPs. This refinement adds significant analytical value and shows that disagreements are at least partly due to a dependent variable problem of ‘over-aggregation’.
Resumo:
Bayesian analysis is given of an instrumental variable model that allows for heteroscedasticity in both the structural equation and the instrument equation. Specifically, the approach for dealing with heteroscedastic errors in Geweke (1993) is extended to the Bayesian instrumental variable estimator outlined in Rossi et al. (2005). Heteroscedasticity is treated by modelling the variance for each error using a hierarchical prior that is Gamma distributed. The computation is carried out by using a Markov chain Monte Carlo sampling algorithm with an augmented draw for the heteroscedastic case. An example using real data illustrates the approach and shows that ignoring heteroscedasticity in the instrument equation when it exists may lead to biased estimates.
Resumo:
A number of methods of evaluating the validity of interval forecasts of financial data are analysed, and illustrated using intraday FTSE100 index futures returns. Some existing interval forecast evaluation techniques, such as the Markov chain approach of Christoffersen (1998), are shown to be inappropriate in the presence of periodic heteroscedasticity. Instead, we consider a regression-based test, and a modified version of Christoffersen's Markov chain test for independence, and analyse their properties when the financial time series exhibit periodic volatility. These approaches lead to different conclusions when interval forecasts of FTSE100 index futures returns generated by various GARCH(1,1) and periodic GARCH(1,1) models are evaluated.
Resumo:
The hypothesis that pronouns can be resolved via either the syntax or the discourse representation has played an important role in linguistic accounts of pronoun interpretation (e.g. Grodzinsky & Reinhart, 1993). We report the results of an eye-movement monitoring study investigating the relative timing of syntactically-mediated variable binding and discourse-based coreference assignment during pronoun resolution. We examined whether ambiguous pronouns are preferentially resolved via either the variable binding or coreference route, and in particular tested the hypothesis that variable binding should always be computed before coreference assignment. Participants’ eye movements were monitored while they read sentences containing a pronoun and two potential antecedents, a c-commanding quantified noun phrase and a non c-commanding proper name. Gender congruence between the pronoun and either of the two potential antecedents was manipulated as an experimental diagnostic for dependency formation. In two experiments, we found that participants’ reading times were reliably longer when the linearly closest antecedent mismatched in gender with the pronoun. These findings fail to support the hypothesis that variable binding is computed before coreference assignment, and instead suggest that antecedent recency plays an important role in affecting the extent to which a variable binding antecedent is considered. We discuss these results in relation to models of memory retrieval during sentence comprehension, and interpret the antecedent recency preference as an example of forgetting over time.
Resumo:
Over Arctic sea ice, pressure ridges and floe andmelt pond edges all introduce discrete obstructions to the flow of air or water past the ice and are a source of form drag. In current climate models form drag is only accounted for by tuning the air–ice and ice–ocean drag coefficients, that is, by effectively altering the roughness length in a surface drag parameterization. The existing approach of the skin drag parameter tuning is poorly constrained by observations and fails to describe correctly the physics associated with the air–ice and ocean–ice drag. Here, the authors combine recent theoretical developments to deduce the total neutral form drag coefficients from properties of the ice cover such as ice concentration, vertical extent and area of the ridges, freeboard and floe draft, and the size of floes and melt ponds. The drag coefficients are incorporated into the Los Alamos Sea Ice Model (CICE) and show the influence of the new drag parameterization on the motion and state of the ice cover, with the most noticeable being a depletion of sea ice over the west boundary of the Arctic Ocean and over the Beaufort Sea. The new parameterization allows the drag coefficients to be coupled to the sea ice state and therefore to evolve spatially and temporally. It is found that the range of values predicted for the drag coefficients agree with the range of values measured in several regions of the Arctic. Finally, the implications of the new form drag formulation for the spinup or spindown of the Arctic Ocean are discussed.
Resumo:
The analysis step of the (ensemble) Kalman filter is optimal when (1) the distribution of the background is Gaussian, (2) state variables and observations are related via a linear operator, and (3) the observational error is of additive nature and has Gaussian distribution. When these conditions are largely violated, a pre-processing step known as Gaussian anamorphosis (GA) can be applied. The objective of this procedure is to obtain state variables and observations that better fulfil the Gaussianity conditions in some sense. In this work we analyse GA from a joint perspective, paying attention to the effects of transformations in the joint state variable/observation space. First, we study transformations for state variables and observations that are independent from each other. Then, we introduce a targeted joint transformation with the objective to obtain joint Gaussianity in the transformed space. We focus primarily in the univariate case, and briefly comment on the multivariate one. A key point of this paper is that, when (1)-(3) are violated, using the analysis step of the EnKF will not recover the exact posterior density in spite of any transformations one may perform. These transformations, however, provide approximations of different quality to the Bayesian solution of the problem. Using an example in which the Bayesian posterior can be analytically computed, we assess the quality of the analysis distributions generated after applying the EnKF analysis step in conjunction with different GA options. The value of the targeted joint transformation is particularly clear for the case when the prior is Gaussian, the marginal density for the observations is close to Gaussian, and the likelihood is a Gaussian mixture.
Resumo:
We study a series of transient entries into the low-latitude boundary layer (LLBL) of all four Cluster spacecraft during an outbound pass through the mid-afternoon magnetopause ([X(GSM), Y(GSM), Z(GSM)] approximate to [2, 7, 9] R(E)). The events take place during an interval of northward IMF, as seen in the data from the ACE satellite and lagged by a propagation delay of 75 min that is well-defined by two separate studies: (1) the magnetospheric variations prior to the northward turning (Lockwood et al., 2001, this issue) and (2) the field clock angle seen by Cluster after it had emerged into the magnetosheath (Opgenoorth et al., 2001, this issue). With an additional lag of 16.5 min, the transient LLBL events cor-relate well with swings of the IMF clock angle (in GSM) to near 90degrees. Most of this additional lag is explained by ground-based observations, which reveal signatures of transient reconnection in the pre-noon sector that then take 10-15 min to propagate eastward to 15 MLT, where they are observed by Cluster. The eastward phase speed of these signatures agrees very well with the motion deduced by the cross-correlation of the signatures seen on the four Cluster spacecraft. The evidence that these events are reconnection pulses includes: transient erosion of the noon 630 nm (cusp/cleft) aurora to lower latitudes; transient and travelling enhancements of the flow into the polar cap, imaged by the AMIE technique; and poleward-moving events moving into the polar cap, seen by the EISCAT Svalbard Radar (ESR). A pass of the DMSP-F15 satellite reveals that the open field lines near noon have been opened for some time: the more recently opened field lines were found closer to dusk where the flow transient and the poleward-moving event intersected the satellite pass. The events at Cluster have ion and electron characteristics predicted and observed by Lockwood and Hapgood (1998) for a Flux Transfer Event (FTE), with allowance for magnetospheric ion reflection at Alfvenic disturbances in the magnetopause reconnection layer. Like FTEs, the events are about 1 R(E) in their direction of motion and show a rise in the magnetic field strength, but unlike FTEs, in general, they show no pressure excess in their core and hence, no characteristic bipolar signature in the boundary-normal component. However, most of the events were observed when the magnetic field was southward, i.e. on the edge of the interior magnetic cusp, or when the field was parallel to the magnetic equatorial plane. Only when the satellite begins to emerge from the exterior boundary (when the field was northward), do the events start to show a pressure excess in their core and the consequent bipolar signature. We identify the events as the first observations of FTEs at middle altitudes.