854 resultados para Interstitial oxygen - Mobility
Resumo:
Purpose: The aim of this study was to evaluate the oxygen saturation in patients with inherited diseases of the retina. Methods: Fundus oximetry images were taken using a retinal vessel analyser (IMEDOS Systems UG, Jena, Germany). Retinal vessel oximetry was performed in 53 eyes of 27 patients suffering from inherited retinal diseases and compared to 22 eyes of 11 healthy controls. The oxygen saturation in all four major retinal arterioles (A-SO2) and venules (V-SO2) were measured and their difference (A - V SO2) was calculated. The data were compared within groups and to controls. Results: Based on V-SO2 values, the rod-cone dystrophy group (66.46 %; SD, ± 5.09) could well be differentiated from controls 54.02 % (SD, ± 3.04), from cone-rod dystrophies 57.56 % (SD, ± 5.66), as well as from inherited maculopathies 58.42% (SD, ± 4.74). The mean A-SO2 in the rod-cone dystrophy group was increased to 98.96 % (SD, ± 6.06, p < 0.014), while in the cone-rod group and in the maculopathy group it was 92.75 % (SD, ± 3.75), respectively 94.44 % (SD ± 4.85), closer to the normal values (92.68 %; SD, ± 3.53, p > 0.05). The A - V SO2 difference, as an indirect indicator for retinal oxygen use, was reduced in the rod-cone patients, however only when the controls were taken into account (p = 0.01). Conclusion: This is to our knowledge the first study which proposes the retinal vessel oximetry to be a sensitive measure for differentiating rod-cone dystrophy patients not only from controls, but also from patients with other inherited retinal dystrophies.
Resumo:
Introduction: Prior repeated-sprints (6) has become an interesting method to resolve the debate surrounding the principal factors that limits the oxygen uptake (V'O2) kinetics at the onset of exercise [i.e., muscle O2 delivery (5) or metabolic inertia (3)]. The aim of this study was to compare the effects of two repeated-sprints sets of 6x6s separated by different recovery duration between the sprints on V'O2 and muscular de-oxygenation [HHb] kinetics during a subsequent heavy-intensity exercise. Methods: 10 male subjects performed a 6-min constant-load cycling test (T50) at intensity corresponding to half of the difference between V'O2max and the ventilatory threshold. Then, they performed two repeated-sprints sets of 6x6s all-out separated by different recovery duration between the sprints (S1:30s and S2:3min) followed, after 7-min-recovery, by the T50 (S1T50 and S2T50, respectively). V'O2, [HHb] of the vastus lateralis (VL) and surface electromyography activity [i.e., root-mean-square (RMS) and the median frequency of the power density spectrum (MDF)] from VL and vastus medialis (VM) were recorded throughout T50. Models using a bi-exponential function for the overall T50 and a mono-exponential for the first 90s of T50 were used to define V'O2 and [HHb] kinetics respectively. Results: V'O2 mean value was higher in S1 (2.9±0.3l.min-1) than in S2 (1.2±0.3l.min-1); (p<0.001). The peripheral blood flow was increased after sprints as attested by a higher basal heart rate (HRbaseline) (S1T50: +22%; S2T50: +17%; p≤0.008). Time delay [HHb] was shorter for S1T50 and S2T50 than for T50 (-22% for both; p≤0.007) whereas the mean response time of V'O2 was accelerated only after S1 (S1T50: 32.3±2.5s; S2T50: 34.4±2.6s; T50: 35.7±5.4s; p=0.031). There were no significant differences in RMS between the three conditions (p>0.05). MDF of VM was higher during the first 3-min in S1T50 than in T50 (+6%; p≤0.05). Conclusion: The study show that V'O2 kinetics was speeded by prior repeated-sprints with a short (30s) but not a long (3min) inter-sprints-recovery even though the [HHb] kinetics was accelerated and the peripheral blood flow was enhanced after both sprints. S1, inducing a greater PCr depletion (1) and change in the pattern of the fibres recruitment (increase in MDF) compared with S2, may decrease metabolic inertia (2), stimulate the oxidative phosphorylation activation (4) and accelerate V'O2 kinetics at the beginning of the subsequent high-intensity exercise.
Resumo:
Objective: The management of sarcoma metastasis by systemic chemotherapy is often unsatisfactory. This has paradoxally been attributed to the leakiness of tumor neovessels which induce high intratumor interstitial fluid pressure (IFP) and limit convection forces that are important for drug distribution. In a rodent model, we have recently shown that photodynamic (PDT) pre treatment of lung metastasis could enhance their uptake of chemotherapy. We hypothesized that PDT transiently decreases tumor IFP which enhances convection and promotes drug distribution.Methods: Sarcoma tumors were generated sub-pleurally in the lungs of 12 rats. Animals were randomized at 10 days into i. no pre-treatment (control) and ii. low dose PDT pre-treatment (0・0625 mg/kg Visudyne, 10J/cm2 and 35 mW/cm2) followed by intravenous Liposomal doxorubicin (LiporubicinTM) administration. Using the wick-in-needle technique, we determined tumor and normal tissue IFP before, during and after PDT. In parallel, the uptake of LiporubicinTM was determined by high performance liquid chromatography in tumor and lung tissues.Results: Tumor IFP was significantly higher than normal tissue IFP in all animals. PDT pre-treatment did not affect normal tissue IFP but caused a significant decrease in tumor IFP (mean decrease by 2+/− 1mmHg) which lasted an average of 30 minutes before reaching baseline values. Tumor but not normal lung tissue LiporubicinTM uptake was significantly increased by 67% with PDT pre-treatment when liporubicin was allowed to circulate for one hour.Conclusion: Photodynamic therapy pre-treatment enhances LiporubicinTM uptake in sarcoma lung metastasis by transiently decreasing tumor IFP. These PDT conditions seem to specifically modulate tumor neovessels but not normal lung vessels.
Resumo:
BACKGROUND: Health risks associated with subclinical hypothyroidism in older adults are unclear. Our objective was to compare the functional mobility of people aged 70 to 79 years by thyroid function categorized by thyrotropin (TSH) level as euthyroid (>or=0.4 to <4.5 mIU/L), mild subclinical hypothyroid (>or=4.5 to <7.0 mIU/L), or moderate subclinical hypothyroid (>or=7.0 to <or=20.0 mIU/L with a normal free thyroxine level) cross-sectionally and over 2 years. METHODS: A total of 2290 community-dwelling residents participating in the year 2 clinic visit (July 1998-June 1999) of the Health, Aging, and Body Composition (Health ABC) Study, who had measured TSH level, had the capacity to walk 20 m unaided, and were not taking thyroid medication or had TSH levels consistent with hyperthyroidism or hypothyroidism. Main outcome measures included self-reported and performance-based measures of mobility (usual and rapid gait speed and endurance walking ability) assessed at study baseline (year 2) and 2 years later. RESULTS: In age- and sex-adjusted analyses, the mild subclinical hypothyroid group (vs the euthyroid group) demonstrated better mobility (faster mean usual and rapid gait speed [1.20 vs 1.15 m/s and 1.65 vs 1.56 m/s, respectively; P < .001] and had a higher percentage of those with good cardiorespiratory fitness and reported walking ease [39.2% vs 28.0% and 44.7% vs 36.5%, respectively; P < .001]). After 2 years, persons with mild subclinical hypothyroidism experienced a similar decline as the euthyroid group but maintained their mobility advantage. Persons with moderate subclinical hypothyroidism had similar mobility and mobility decline as the euthyroid group. CONCLUSION: Generally, well-functioning 70- to 79-year-old individuals with subclinical hypothyroidism do not demonstrate increased risk of mobility problems, and those with mild elevations in TSH level show a slight functional advantage.
Resumo:
Patients admitted to the neurocritical care unit (NCCU) often have serious conditions that can be associated with high morbidity and mortality. Pharmacologic agents or neuroprotectants have disappointed in the clinical environment. Current NCCU management therefore is directed toward identification, prevention, and treatment of secondary cerebral insults that evolve over time and are known to aggravate outcome. This strategy is based on a variety of monitoring techniques including use of intraparenchymal monitors. This article reviews parenchymal brain oxygen monitors, including the available technologies, practical aspects of use, the physiologic rationale behind their use, and patient management based on brain oxygen.
Resumo:
Pseudomonas aeruginosa, when deprived of oxygen, generates ATP from arginine catabolism by enzymes of the arginine deiminase pathway, encoded by the arcDABC operon. Under conditions of low oxygen tension, the transcriptional activator ANR binds to a site centered 41.5 bp upstream of the arcD transcriptional start. ANR-mediated anaerobic induction was enhanced two- to threefold by extracellular arginine. This arginine effect depended, in trans, on the transcriptional regulator ArgR and, in cis, on an ArgR binding site centered at -73.5 bp in the arcD promoter. Binding of purified ArgR protein to this site was demonstrated by electrophoretic mobility shift assays and DNase I footprinting. This ArgR recognition site contained a sequence, 5'-TGACGC-3', which deviated in only 1 base from the common sequence motif 5'-TGTCGC-3' found in other ArgR binding sites of P. aeruginosa. Furthermore, an alignment of all known ArgR binding sites confirmed that they consist of two directly repeated half-sites. In the absence of ANR, arginine did not induce the arc operon, suggesting that ArgR alone does not activate the arcD promoter. According to a model proposed, ArgR makes physical contact with ANR and thereby facilitates initiation of arc transcription.
Resumo:
Introduction: Prior repeated-sprints (6) has become an interesting method to resolve the debate surrounding the principal factors that limits the oxygen uptake (V'O2) kinetics at the onset of exercise [i.e., muscle O2 delivery (5) or metabolic inertia (3)]. The aim of this study was to compare the effects of two repeated-sprints sets of 6x6s separated by different recovery duration between the sprints on V'O2 and muscular de-oxygenation [HHb] kinetics during a subsequent heavy-intensity exercise. Methods: 10 male subjects performed a 6-min constant-load cycling test (T50) at intensity corresponding to half of the difference between V'O2max and the ventilatory threshold. Then, they performed two repeated-sprints sets of 6x6s all-out separated by different recovery duration between the sprints (S1:30s and S2:3min) followed, after 7-min-recovery, by the T50 (S1T50 and S2T50, respectively). V'O2, [HHb] of the vastus lateralis (VL) and surface electromyography activity [i.e., root-mean-square (RMS) and the median frequency of the power density spectrum (MDF)] from VL and vastus medialis (VM) were recorded throughout T50. Models using a bi-exponential function for the overall T50 and a mono-exponential for the first 90s of T50 were used to define V'O2 and [HHb] kinetics respectively. Results: V'O2 mean value was higher in S1 (2.9±0.3l.min-1) than in S2 (1.2±0.3l.min-1); (p<0.001). The peripheral blood flow was increased after sprints as attested by a higher basal heart rate (HRbaseline) (S1T50: +22%; S2T50: +17%; p≤0.008). Time delay [HHb] was shorter for S1T50 and S2T50 than for T50 (-22% for both; p≤0.007) whereas the mean response time of V'O2 was accelerated only after S1 (S1T50: 32.3±2.5s; S2T50: 34.4±2.6s; T50: 35.7±5.4s; p=0.031). There were no significant differences in RMS between the three conditions (p>0.05). MDF of VM was higher during the first 3-min in S1T50 than in T50 (+6%; p≤0.05). Conclusion: The study show that V'O2 kinetics was speeded by prior repeated-sprints with a short (30s) but not a long (3min) inter-sprints-recovery even though the [HHb] kinetics was accelerated and the peripheral blood flow was enhanced after both sprints. S1, inducing a greater PCr depletion (1) and change in the pattern of the fibres recruitment (increase in MDF) compared with S2, may decrease metabolic inertia (2), stimulate the oxidative phosphorylation activation (4) and accelerate V'O2 kinetics at the beginning of the subsequent high-intensity exercise.
Resumo:
Fossil bones and teeth of Late Pleistocene terrestrial mammals from Rhine River gravels (RS) and the North Sea (NS), that have been exposed to chemically and isotopically distinct diagenetic fluids (fresh water versus seawater), were investigated to study the effects of early diagenesis on biogenic apatite. Changes in phosphate oxygen isotopic composition (delta O-18(PO4)), nitrogen content (wt.% N) and rare earth element (REE) concentrations were measured along profiles within bones that have not been completely fossilized, and in skeletal tissues (bone, dentine, enamel) with different susceptibilities to diagenetic alteration. Early diagenetic changes of elemental and isotopic compositions of apatite in fossil bone are related to the loss of the stabilizing collagen matrix. The REE concentration is negatively correlated with the nitrogen content, and therefore the amount of collagen provides a sensitive proxy for early diagenetic alteration. REE patterns of RS and NS bones indicate initial fossilization in a fresh water fluid with similar REE compositions. Bones from both settings have nearly collagen-free, REE-, U-, F- and Sr-enriched altered outer rims, while the collagen-bearing bone compacta in the central part often display early diagenetic pyrite void-fillings. However, NS bones exposed to Holocene seawater have outer rim delta O-18(PO4) values that are 1.1 to 2.6 parts per thousand higher compared to the central part of the same bones (delta O-18(PO4) = 18.2 +/- 0.9 parts per thousand, n = 19). Surprisingly, even the collagen-rich bone compacta with low REE contents and apatite crystallinity seems altered, as NS tooth enamel (delta O-18(PO4) =15.0 +/- 0.3 parts per thousand, n=4) has about 3%. lower delta O-18(PO4) values, values that are also similar to those of enamel from RS teeth. Therefore, REE concentration, N content and apatite crystallinity are in this case only poor proxies for the alteration of delta O-18(PO4) values. Seawater exposure of a few years up to 8 kyr can change the delta O-18(PO4) values of the bone apatite by > 3 parts per thousand. Therefore, bones fossilized in marine settings must be treated with caution for palaeoclimatic reconstructions. However, enamel seems to preserve pristine delta O-18(PO4) values on this time scale. Using species-specific calibrations for modern mammals, a mean delta O-18(H2O) value can be reconstructed for Late Pleistocene mammalian drinking water of around -9.2 +/- 0.5 parts per thousand, which is similar to that of Late Pleistocene groundwater from central Europe. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
To study the effects of muscle paralysis on joint mobility, we compared eight premature infants treated with pancuronium bromide with a control group. A significant reduction was observed in hip and knee flexion, and in ankle dorsal extension, which tended to resolve in time. We conclude that muscle paralysis reduces the mobility of selected joints; spontaneous activity appears to prevent long-term contractures.
Resumo:
Highway agencies spend millions of dollars to ensure safe and efficient winter travel. However, the effectiveness of winter-weather maintenance practices on safety and mobility are somewhat difficult to quantify. Safety and Mobility Impacts of Winter Weather - Phase 1 investigated opportunities for improving traffic safety on state-maintained roads in Iowa during winter-weather conditions. In Phase 2, three Iowa Department of Transportation (DOT) high-priority sites were evaluated and realistic maintenance and operations mitigation strategies were also identified. In this project, site prioritization techniques for identifying roadway segments with the potential for safety improvements related to winter-weather crashes, were developed through traditional naïve statistical methods by using raw crash data for seven winter seasons and previously developed metrics. Additionally, crash frequency models were developed using integrated crash data for four winter seasons, with the objective of identifying factors that affect crash frequency during winter seasons and screening roadway segments using the empirical Bayes technique. Based on these prioritization techniques, 11 sites were identified and analyzed in conjunction with input from Iowa DOT district maintenance managers and snowplow operators and the Iowa DOT Road Weather Information System (RWIS) coordinator.
Resumo:
The mode of action of nuclear receptors in living cells is an actively investigated field but much remains hypothetical due to the lack, until recently, of methods allowing the assessment of molecular mechanisms in vivo. However, these last years, the development of fluorescence microscopy methods has allowed initiating the dissection of the molecular mechanisms underlying gene regulation by nuclear receptors directly in living cells or organisms. Following our analyses on peroxisome proliferator activated receptors (PPARs) in living cells, we discuss here the different models arising from the use of these tools, that attempt to link mobility, DNA binding or chromatin interaction, and transcriptional activity.
Resumo:
BACKGROUND: Macrophage-mediated chronic inflammation is mechanistically linked to insulin resistance and atherosclerosis. Although arginase I is considered antiinflammatory, the role of arginase II (Arg-II) in macrophage function remains elusive. This study characterizes the role of Arg-II in macrophage inflammatory responses and its impact on obesity-linked type II diabetes mellitus and atherosclerosis. METHODS AND RESULTS: In human monocytes, silencing Arg-II decreases the monocytes' adhesion to endothelial cells and their production of proinflammatory mediators stimulated by oxidized low-density lipoprotein or lipopolysaccharides, as evaluated by real-time quantitative reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. Macrophages differentiated from bone marrow cells of Arg-II-deficient (Arg-II(-/-)) mice express lower levels of lipopolysaccharide-induced proinflammatory mediators than do macrophages of wild-type mice. Importantly, reintroducing Arg-II cDNA into Arg-II(-/-) macrophages restores the inflammatory responses, with concomitant enhancement of mitochondrial reactive oxygen species. Scavenging of reactive oxygen species by N-acetylcysteine prevents the Arg-II-mediated inflammatory responses. Moreover, high-fat diet-induced infiltration of macrophages in various organs and expression of proinflammatory cytokines in adipose tissue are blunted in Arg-II(-/-) mice. Accordingly, Arg-II(-/-) mice reveal lower fasting blood glucose and improved glucose tolerance and insulin sensitivity. Furthermore, apolipoprotein E (ApoE)-deficient mice with Arg-II deficiency (ApoE(-/-)Arg-II(-/-)) display reduced lesion size with characteristics of stable plaques, such as decreased macrophage inflammation and necrotic core. In vivo adoptive transfer experiments reveal that fewer donor ApoE(-/-)Arg-II(-/-) than ApoE(-/-)Arg-II(+/+) monocytes infiltrate into the plaque of ApoE(-/-)Arg-II(+/+) mice. Conversely, recipient ApoE(-/-)Arg-II(-/-) mice accumulate fewer donor monocytes than do recipient ApoE(-/-)Arg-II(+/+) animals. CONCLUSIONS: Arg-II promotes macrophage proinflammatory responses through mitochondrial reactive oxygen species, contributing to insulin resistance and atherogenesis. Targeting Arg-II represents a potential therapeutic strategy in type II diabetes mellitus and atherosclerosis. (J Am Heart Assoc. 2012;1:e000992 doi: 10.1161/JAHA.112.000992.).