804 resultados para Intelligent systems. Pipeline networks. Fuzzy logic


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Ciências Cartográficas - FCT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a Computer Aided Diagnosis (CAD) system that automatically classifies microcalcifications detected on digital mammograms into one of the five types proposed by Michele Le Gal, a classification scheme that allows radiologists to determine whether a breast tumor is malignant or not without the need for surgeries. The developed system uses a combination of wavelets and Artificial Neural Networks (ANN) and is executed on an Altera DE2-115 Development Kit, a kit containing a Field-Programmable Gate Array (FPGA) that allows the system to be smaller, cheaper and more energy efficient. Results have shown that the system was able to correctly classify 96.67% of test samples, which can be used as a second opinion by radiologists in breast cancer early diagnosis. (C) 2013 The Authors. Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objective of the presented study is the development of a predictive interval type-2 fuzzy inference system in order to estimate the mortality risk for a newborn, to be used as an auxiliary tool for decision making in medical centers where there is a lack of professionals for this purpose and, afterwards, to compare its performance to a type-1 fuzzy system. The input variables were chosen due to their acquisition ‘simplicity, not involving any invasive tests, such as blood tests or other specific tests. The variables are easily obtained in the first few minutes of life: birth weight, gestational age at delivery, 5-minute Apgar score and previous report of stillbirth. Databases from the DATASUS were used to validate the model. 1351 records from the city of São José dos Campos, a mid-sized city in the São Paulo state’s countryside, were considered in this study. Finally, an analysis using the ROC curve was performed to estimate the model’s accuracy

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work was developed a fuzzy computational model type-2 predictive interval, using the software of the type-2 fuzzy MATLAB toolbox, the final idea is to estimate the number of hospitalizations of patients with respiratory diseases. The interest in the creation of this model is to assist in decision makeshift hospital environment, where there are no medical or professional equipment available to provide the care that the population need. It began working with the study of fuzzy logic, the fuzzy inference system and fuzzy toolbox. Through a real database provided by the Departamento de Informática do Sistema Único de Saúde (DATASUS) and Companhia de Tecnologia de Saneamento Básico (CETESB), was possible to start the model. The analyzed database is composed of the number of patients admitted with respiratory diseases a day for the public hospital in São José dos Campos, during the year 2009 and by factors such as PM10, SO2, wind and humidity. These factors were analyzed as input variables and, through these, is possible to get the number of admissions a day, which is the output variable of the model. For data analysis we used the fuzzy control method type-2 Mamdani. In the following steps the performance developed in this work was compared with the performance of the same model using fuzzy logic type-1. Finally, the validity of the models was estimated by the ROC curve

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work develops a fuzzy inference system to control the rotation speed of a DC motor available in Degem Kit. Therefore, it should use the fuzzy toolbox of Matlab in conjunction with the data acquisition board NI - USB - 6009, a National Instrument’s board. An introduction to fuzzy logic, the mathematical model of a DC motor and the operation of data acquisition board is presented first. Followed by the controller fuzzy model implemented using Simulink which is described in detail. Finally, the prototype is shown and the simulator results are presented

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract A fuzzy linguistic model based on the Mamdani method with input variables, particulate matter, sulfur dioxide, temperature and wind obtained from CETESB with two membership functions each was built to predict the average hospitalization time due to cardiovascular diseases related to exposure to air pollutants in São José dos Campos in the State of São Paulo in 2009. The output variable is the average length of hospitalization obtained from DATASUS with six membership functions. The average time given by the model was compared to actual data using lags of 0 to 4 days. This model was built using the Matlab v. 7.5 fuzzy toolbox. Its accuracy was assessed with the ROC curve. Hospitalizations with a mean time of 7.9 days (SD = 4.9) were recorded in 1119 cases. The data provided revealed a significant correlation with the actual data according to the lags of 0 to 4 days. The pollutant that showed the greatest accuracy was sulfur dioxide. This model can be used as the basis of a specialized system to assist the city health authority in assessing the risk of hospitalizations due to air pollutants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Automated Production Systems Development involves aspects concerning the integration of technological components that exist on the market, such as: Programmable Logic Controllers (PLC), robot manipulators, various sensors and actuators, image processing systems, communication networks and collaborative supervisory systems; all integrated into a single application. This paper proposes an automated platform for experimentation, implemented through typical architecture for Automated Production Systems, which integrates the technological components described above, in order to allow researchers and students to carry out practical laboratory activities. These activities will complement the theoretical knowledge acquired by the students in the classroom, thus improving their training and professional skills. A platform designed using this generic structure will allow users to work within an educational environment that reflects most aspects found in Industrial Automated Manufacturing Systems, such as technology integration, communication networks, process control and production management. In addition, this platform offers the possibility complete automated process of control and supervision via remote connection through the internet (WebLab), enabling knowledge sharing between different teaching and research groups.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work is to determine the membership functions for the construction of a fuzzy controller to evaluate the energy situation of the company with respect to load and power factors. The energy assessment of a company is performed by technicians and experts based on the indices of load and power factors, and analysis of the machines used in production processes. This assessment is conducted periodically to detect whether the procedures performed by employees in relation to how of use electricity energy are correct. With a fuzzy controller, this performed can be done by machines. The construction of a fuzzy controller is initially characterized by the definition of input and output variables, and their associated membership functions. We also need to define a method of inference and a processor output. Finally, you need the help of technicians and experts to build a rule base, consisting of answers that provide these professionals in function of characteristics of the input variables. The controller proposed in this paper has as input variables load and power factors, and output the company situation. Their membership functions representing fuzzy sets called by linguistic qualities, as “VERY BAD” and “GOOD”. With the method of inference Mandani and the processor to exit from the Center of Area chosen, the structure of a fuzzy controller is established, simply by the choice by technicians and experts of the field energy to determine a set of rules appropriate for the chosen company. Thus, the interpretation of load and power factors by software comes to meeting the need of creating a single index that indicates an overall basis (rational and efficient) as the energy is being used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Agronegócio e Desenvolvimento - Tupã

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pharmaceutical industry was consolidated in Brazil in the 1930s, and since then has become increasingly competitive. Therefore the implementation of the Toyota Production System, which aims to lean production, has become common among companies in the segment. The main efficiency indicator currently used is the Overall Equipment Effectiveness (OEE). This paper intends to, using the fuzzy model DEA-BCC, analyze the efficiency of the production lines of a pharmaceutical company in the Paraíba Valley, compare the values obtained by the model with those calculated by the OEE, identify the most sensitive machines to variation in the data input and develop a ranking of effectiveness between the consumer machinery. After the development, it is shown that the accuracy of the relationship between the two methods is approximately 57% and the line considered the most effective by the Toyota Production System is not the same as the one found by this paper