971 resultados para Infrared and ultraviolet spectra
Resumo:
Background Genomic data are lacking for many allergen sources. To circumvent this limitation, we implemented a strategy to reveal the repertoire of pollen allergens of a grass with clinical importance in subtropical regions, where an increasing proportion of the world's population resides. Objective We sought to identify and immunologically characterize the allergenic components of the Panicoideae Johnson grass pollen (JGP; Sorghum halepense). Methods The total pollen transcriptome, proteome, and allergome of JGP were documented. Serum IgE reactivities with pollen and purified allergens were assessed in 64 patients with grass pollen allergy from a subtropical region. Results Purified Sor h 1 and Sor h 13 were identified as clinically important allergen components of JGP with serum IgE reactivity in 49 (76%) and 28 (43.8%), respectively, of patients with grass pollen allergy. Within whole JGP, multiple cDNA transcripts and peptide spectra belonging to grass pollen allergen families 1, 2, 4, 7, 11, 12, 13, and 25 were identified. Pollen allergens restricted to subtropical grasses (groups 22-24) were also present within the JGP transcriptome and proteome. Mass spectrometry confirmed the IgE-reactive components of JGP included isoforms of Sor h 1, Sor h 2, Sor h 13, and Sor h 23. Conclusion Our integrated molecular approach revealed qualitative differences between the allergenic components of JGP and temperate grass pollens. Knowledge of these newly identified allergens has the potential to improve specific diagnosis and allergen immunotherapy treatment for patients with grass pollen allergy in subtropical regions and reduce the burden of allergic respiratory disease globally.
Resumo:
Three fullerene isoindoline nitroxides N-methyl-3,4-fulleropyrrolidine-2-spiro-5′- (1′,1′,3′,3′-tetramethylisoindolin-2′-yloxyl), (C60-(TMIO)m, and C70-(TMIO)n) were synthesized by the covalent bonding of 5-formyl-1,1,3,3-tetramethyl isoindolin-2-yloxyl to the fullerenes C60 and C70. Significantly, the X-ray photoelectron spectra indicated the characteristic N 1s signals of NO. at 402 eV. The atomic force microscope morphologies showed that the average particle sizes of C60-(TMIO)m and C70-(TMIO)n were 38 and 15 nm. The electrochemical experiments indicated that fullerene bound isoindoline nitroxides retained similar electrochemical properties and redox reaction mechanisms as the parent nitroxides. The electron paramagnetic resonance spectra of the fullerene isoindoline nitroxides all exhibited the hyperfine splittings and characteristic spectra of tetramethyl isoindoline nitroxides, with typical nitroxide g-values and nitrogen isotropic hyperfine coupling constants. Therefore, these fullerene isoindoline nitroxides may be considered as potential candidates for novel biological spin probes using electron paramagnetic resonance spectroscopy.
Resumo:
A novel electrochemical biosensor, DNA/hemin/nafion–graphene/GCE, was constructed for the analysis of the benzo(a)pyrene PAH, which can produce DNA damage induced by a benzo(a)pyrene (BaP) enzyme-catalytic product. This biosensor was assembled layer-by-layer, and was characterized with the use of cyclic voltammetry, electrochemical impedance spectroscopy (EIS) and atomic force microscopy. Ultimately, it was demonstrated that the hemin/nafion–graphene/GCE was a viable platform for the immobilization of DNA. This DNA biosensor was treated separately in benzo(a)pyrene, hydrogen peroxide (H2O2) and in their mixture, respectively, and differential pulse voltammetry (DPV) analysis showed that an oxidation peak was apparent after the electrode was immersed in H2O2. Such experiments indicated that in the presence of H2O2, hemin could mimic cytochrome P450 to metabolize benzo(a)pyrene, and a voltammogram of its metabolite was recorded. The DNA damage induced by this metabolite was also detected by electrochemical impedance and ultraviolet spectroscopy. Finally, a novel, indirect DPV analytical method for BaP in aqueous solution was developed based on the linear metabolite versus BaP concentration plot; this method provided a new, indirect, quantitative estimate of DNA damage.
Resumo:
In order to explore the anticancer effect associated with the thiazolidinone framework, several 2-(5-((5-(4-chlorophenyl)furan-2-yl)methylene)-4-oxo-2-thioxothiazolidin-3-yl)acetic acid derivatives 5(a-1) were synthesized. Variation in the functional group at C-terminal of the thiazolidinone led to set of compounds bearing amide moiety. Their chemical structures were confirmed by H-1 NMR, IR and Mass Spectra analysis. These thiazolidinone compounds containing furan moiety exhibits moderate to strong antiproliferative activity in a cell cycle stage-dependent and dose dependent manner in two different human leukemia cell lines. The importance of the electron donating groups on thiazolidinone moiety was confirmed by MTT and Trypan blue assays and it was concluded that the 4th position of the substituted aryl ring plays a dominant role for its anticancer property. Among the synthesized compounds, 5e and 5f have shown potent anticancer activity on both the cell lines tested. To rationalize the role of electron donating group in the induction of cytotoxicity we have chosen two molecules (5e and 5k) having different electron donating group at different positions. LDH assay, Flow cytometric analysis and DNA fragmentation suggest that 5e is more cytotoxic and able to induce the apoptosis. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Hydroxo-bridged homo- and hetero-trinuclear cobalt(III) complexes of the type [MII(H2O)2{(OH)2CoIII(N4)}2]X2·nH2O [MII= a divalent metal ion such as CoII, NiII or ZnII; N4=(en)2(en = ethane-1,2-diamine) or (NH3)4; X = SO4 or (ClO4)2; n= 3 or 5] have been prepared and spectroscopically characterized. The structure of [Cu{(OH)2Co(en)2}2][SO4]2·2H2O 1 has been determined. The geometry around copper atom is a pseudo-square-based pyramid, with the basal sites occupied by four bridging hydroxide oxygens and the apical site is occupied by a weakly co-ordinated sulfate anion [Cu–O 2.516(4)Å]. The hydroxo groups bridge pairs of cobalt(III) ions which are in near-octahedral environments. The ethylenediamine chelate rings have the twist conformation. In the crystal structure of [Cu{(OH)2Co(en)2}2][ClO4]4·2H2O 2 the perchlorate ion is not co-ordinated and the en ligands have envelope conformations. The sulfate ion in [Cu{(OH)2Co(NH3)4}2][SO4]2·4H2O 3 is not co-ordinated to the central copper ion. Electronic, infrared and variable-temperature EPR spectral data are discussed.
Resumo:
Fine particle FeVO4, AIVO4, YVO4 and Yo.95Eu0.05VO4 have been prepared by the combustion of aqueous solutions containing corresponding metal nitrate, ammonium metavanadate, ammonium nitrate and 3-methyl-5-pyrazolone.The solutions containing the redox mixtures, when rapidly heated at 370 °C, ignite and undergo self-propagating,gas-producing, exothermic reactions to yield fine particle metal vanadates. Formation of crystalline vanadates was confirmed by powder X-ray diffraction patterns,27A1 nuclear magnetic resonance, IR and fluorescence spectra.
Resumo:
Spectroscopic study on the interactions of trace elements Co, Mn, Mg and Al with d(GCGTACGC) indicated the following: Al and Mg did not alter T-m values. Mn enhanced T-m at lower concentration and decreased it at higher concentrations. Interestingly Co at higher concentration elevated the T-m. These studies also showed lower concentrations of Mn displaced EtBr, whereas Al could displace it at higher ionic strength. Mg and Co displaced EtBr fluorescence at moderate concentrations. The binding constant values and CD spectra clearly indicated strong binding of these elements to DNA.
Resumo:
New lanthanide complexes of salicylaldehyde-Schiff bases with salicyloyl hydrazide and anthranilic acid, were synthesized by a novel method consisting of refluxing the mixtures of Schiff base ligands and lanthanide trichloroacetate in acetone. Solid complexes of formulae Ln(SHSASB)s*2Hz0 and Ln2(AASASB)s*2Hz0 where Ln = La-Yb and Y, were isolated. Proton NMR and IR spectra for the complexes reveal the bidentate binding of both the Schiff base ligands to the lanthanide ion. Electronic spectra along with the conductance data for the complexes indicate a coordination number of six for the lanthanide ion in the complexes of both the Schiff bases.
Resumo:
Dialkyl (3-aryl-l,2,4-oxadiazol-5-yl)phosphonate6sa -h have been obtained by 1,3-dipolar cycloaddition of arenenitrile oxides 5a-f to dialkyl phosphorocyanidates (4a and 4b) in yields ranging between 30% and 58%. A standardized method for obtaining cyanidates 4a and 4b has been established. The diethyl thiophosphorocyanidate (4c) is less reactive than 4a and 4b, only the 3-(4'-nitrophenyl) derivative 6i being obtainable. While the IR and NMFt spectra of 6a-i were unexceptional, their UV spectra showed evidence of conjugative interaction in high degrees between the phosphonate and heterocyclic moieties as well as a varying conjugative interaction between the heterocyclic and aryl moieties. The oxadiazoles 6a-h are thermally labile and yield trialkyl phosphates 7 as the only identifiable products. A mechanism based on the intermediacy of monomeric alkyl metaphosphate 11 in the formation of trialkyl phosphate was postulated, and supportive evidence in the form of trapping the metaphosphate with acetophenone has been obtained.
Resumo:
The reaction of Cu(II), Zn(II), Cd(II) and Hg(II) chlorides and bromides with imidazoline-2-thione (IZT) and its N-methyl derivative (NMIZT) yields complexes of stoichiometry ML3X2 and ML2X (IZT) and its N-methyl derivative (NMIZT) yields complexes of stoichiometry ML3X2 and ML2X (where M=Cu(I)); copper(II) halides yield Cu(I) complexes. On the basis of infrared and 13C n.m.r.
Resumo:
The application of the CNDO and PPP-CI methods to N,N-dimethyl dithiocarbamate, O-methyl dithiocarbonate (methyl xanthate) and methyl trithiocarbonate ions for the elucidation of electronic structure and electronic spectra is described. The CNDO/2 calculations have been used to obtain the one centre core integrals of the ionic compounds required in calculating the pi electronic spectra of these molecules using the PPP method. The calculated spectra are in good agreement with the experiment. The atomic charge densities determined for alkyl xanthate, dithiocarbamate and trithiocarbonate ions support the earlier qualitative predictions regarding electronic structure from spectroscopic and other studies.
Resumo:
The valence state of Yb in some of its intermetallics, YbNi2Ge2, YbCu2Si2 and YbPd2Si2 has been investigated by LIII(Yb) absorption edges and X-ray pnotoelectron spectra in the 4f and 4d regions. These studies establish the presence of mixed valence in all three systems and illustrate the utility of 4f and 4d spectra in the study of mixed valence in Yb compounds.
Resumo:
Ferrous and ferric complexes of 2,4-dithiobiuret (Dtb) of the type Fe(Dtb)m Xn where m, n = 1-3, and X = CI–, Br–, I– and SO 4 2– , and a neutral Fe(Dtb-H)2 complex have been synthesized and characterised by elemental analyses, magnetic susceptibility, i.r., electronic and Mössbauer spectroscopic studies. From its i.r. spectrum Dtb was found to act as a S,S-coordinating bidentate chelate. The magnetic moment, electronic and Massbauer spectra are consistent with a low spin distorted octahedral structure for the ferric complexes and a high spin form for ferrous complexes.
Resumo:
High-throughput techniques are necessary to efficiently screen potential lignocellulosic feedstocks for the production of renewable fuels, chemicals, and bio-based materials, thereby reducing experimental time and expense while supplanting tedious, destructive methods. The ratio of lignin syringyl (S) to guaiacyl (G) monomers has been routinely quantified as a way to probe biomass recalcitrance. Mid-infrared and Raman spectroscopy have been demonstrated to produce robust partial least squares models for the prediction of lignin S/G ratios in a diverse group of Acacia and eucalypt trees. The most accurate Raman model has now been used to predict the S/G ratio from 269 unknown Acacia and eucalypt feedstocks. This study demonstrates the application of a partial least squares model composed of Raman spectral data and lignin S/G ratios measured using pyrolysis/molecular beam mass spectrometry (pyMBMS) for the prediction of S/G ratios in an unknown data set. The predicted S/G ratios calculated by the model were averaged according to plant species, and the means were not found to differ from the pyMBMS ratios when evaluating the mean values of each method within the 95 % confidence interval. Pairwise comparisons within each data set were employed to assess statistical differences between each biomass species. While some pairwise appraisals failed to differentiate between species, Acacias, in both data sets, clearly display significant differences in their S/G composition which distinguish them from eucalypts. This research shows the power of using Raman spectroscopy to supplant tedious, destructive methods for the evaluation of the lignin S/G ratio of diverse plant biomass materials.
Resumo:
Retinol-binding protein and prealbumin were isolated from duck plasma by chromatography on DEAE-cellulose-and DEAE-Sephadex A-50, gel filtration on Sephadex G- 100 and preparative Polyacrylamide gel electrophoresis. The molecular weights of the retinolbinding protein-prealbumin complex, prealbumin and retinol-binding protein were found to be 75,000, 55,0000 and 20,000, respectively. On sodium dodecyl sulphate Polyacrylamide gel electrophoresis, prealbumin dissociated into identical subunits exhibiting a molecular weight of 13,500. Retinol-binding protein exhibited microheterogeneity on electrophoresis, whereas prealbumin moved as a single band unlike the multiple bands observed in chicken and rat.The ultraviolet and fluorescence spectra of the two proteins were similar to those isolated from other species. No carbohydrate moiety was detected in either retinol-binding protein or prealbumin. Duck retinol-binding protein and prealbumin showed cross-reactivity with their counterparts in chicken but differed immunologically from those of goat and man. Retinolbinding protein and prealbumin could be dissociated at low ionic strength, in 2M urea, by CMsephadex chromatography or on preparative electrophoresis. Although the transport of retinol in duck plasma is mediated by carrier proteins as in other species, it is distinguished by the absence of microheterogeneity in prealbumin and of an apo-retinol-binding protein form that could be transported in the plasma.