565 resultados para Inertia
Resumo:
A presente pesquisa tem como objetivo principal demonstrar a contribuição do conceito de sujeito em Franz Hinkelammert para o estudo da religião. Pretende-se mostrar o valor epistemológico crítico desse conceito, compreensível à luz do método dialético transcendental descoberto por Marx e desenvolvido por Hinkelammert, possibilitando sua aplicabilidade no estudo das ciências da religião. Procura-se responder à pergunta posta por Boaventura de Sousa Santos sobre a possibilidade de valorizar o potencial emancipador das subjetividades rebeldes, visando a superação da concepção abstrata de sujeito das ciências empíricas, cuja metodologia científica se fundamenta na objetividade neutral de cunho weberiano. Para tanto, analisa-se a relação entre essa concepção e os sacrifícios humanos dai decorrentes. A invisibilidade ou resignada aceitação desses sacrifícios apontam para a necessidade epistemológica da adoção do conceito de sujeito como critério científico de análise e discernimento, levando à descoberta e crítica das dinâmicas relacionais inconscientes que regem as sociedades entregues à inércia de suas estruturas. Trata-se dum conceito que implica numa teologia subjetiva na qual, Deus se faz presente como cúmplice da resistência das vítimas contra os dominadores , bem como dum critério não religioso que desemboca numa ética autônoma, voltada para uma práxis religiosa humanizadora.
Resumo:
O estudo sociopolítico aqui contido analisa a ausência da participação dos professores do ensino público da rede estadual de São Paulo nos movimentos sindicais, a partir da década de 2000. À desvalorização da carreira e os baixos salários continuam sendo queixas semelhantes ao passado; o que difere é que não há mais movimento como no passado. Para pesquisar tal inércia partimos da observação da participação dos professores nos movimentos sindicais a partir de 1980 até 2009 e dividimos em dois períodos: o primeiro período, que vai de 1980 a 1989 e 1990 a 1999, (porque neles, ocorreram as maiores movimentações da categoria), e um segundo período que vai de 2000 a 2009 (onde se observa claramente o declínio de tais movimentos). O objetivo dessa pesquisa é responder por que o professor atualmente não participa mais dos movimentos sindicais e o que provoca a ausência dos professores nos movimentos da categoria. Faremos a pesquisa com duas gerações de professores distintas: uma geração que vivenciou os movimentos da categoria nas décadas de 1980 e 1990, e que ainda está ativa na rede pública, e outra geração de jovens professores que ingressaram a partir de 2000. A hipótese aqui levantada é a de que as diferenças da origem de classe social dos professores, a formação política e a formação universitária dentro dos moldes neoliberais e a política neoliberal adotada para a educação pública do Estado de São Paulo, foram os fatores que influenciaram o nível de participação dos docentes em movimentos sindicais, gerando diferenças de comportamento reivindicatório entre as gerações. A pesquisa não tem por objetivo a análise das entidades sindicais e sim do pensamento e sentimento dos elementos que compõem esses sindicatos e formam a alma dos movimentos: os professores.
Resumo:
A system for the NDI' testing of the integrity of conposite materials and of adhesive bonds has been developed to meet industrial requirements. The vibration techniques used were found to be applicable to the development of fluid measuring transducers. The vibrational spectra of thin rectangular bars were used for the NDT work. A machined cut in a bar had a significant effect on the spectrum but a genuine crack gave an unambiguous response at high amplitudes. This was the generation of fretting crack noise at frequencies far above that of the drive. A specially designed vibrational decrement meter which, in effect, measures mechanical energy loss enabled a numerical classification of material adhesion to be obtained. This was used to study bars which had been flame or plasma sprayed with a variety of materials. It has become a useful tool in optimising coating methods. A direct industrial application was to classify piston rings of high performance I.C. engines. Each consists of a cast iron ring with a channel into which molybdenum, a good bearing surface, is sprayed. The NDT classification agreed quite well with the destructive test normally used. The techniques and equipment used for the NOT work were applied to the development of the tuning fork transducers investigated by Hassan into commercial density and viscosity devices. Using narrowly spaced, large area tines a thin lamina of fluid is trapped between them. It stores a large fraction of the vibrational energy which, acting as an inertia load reduces the frequency. Magnetostrictive and piezoelectric effects together or in combination enable the fork to be operated through a flange. This allows it to be used in pipeline or 'dipstick' applications. Using a different tine geometry the viscosity loading can be predoninant. This as well as the signal decrement of the density transducer makes a practical viscometer.
Resumo:
The recent explosive growth in advanced manufacturing technology (AMT) and continued development of sophisticated information technologies (IT) is expected to have a profound effect on the way we design and operate manufacturing businesses. Furthermore, the escalating capital requirements associated with these developments have significantly increased the level of risk associated with initial design, ongoing development and operation. This dissertation has examined the integration of two key sub-elements of the Computer Integrated Manufacturing (CIM) system, namely the manufacturing facility and the production control system. This research has concentrated on the interactions between production control (MRP) and an AMT based production facility. The disappointing performance of such systems has been discussed in the context of a number of potential technological and performance incompatibilities between these two elements. It was argued that the design and selection of operating policies for both is the key to successful integration. Furthermore, policy decisions are shown to play an important role in matching the performance of the total system to the demands of the marketplace. It is demonstrated that a holistic approach to policy design must be adopted if successful integration is to be achieved. It is shown that the complexity of the issues resulting from such an approach required the formulation of a structured design methodology. Such a methodology was subsequently developed and discussed. This combined a first principles approach to the behaviour of system elements with the specification of a detailed holistic model for use in the policy design environment. The methodology aimed to make full use of the `low inertia' characteristics of AMT, whilst adopting a JIT configuration of MRP and re-coupling the total system to the market demands. This dissertation discussed the application of the methodology to an industrial case study and the subsequent design of operational policies. Consequently a novel approach to production control resulted. A central feature of which was a move toward reduced manual intervention in the MRP processing and scheduling logic with increased human involvement and motivation in the management of work-flow on the shopfloor. Experimental results indicated that significant performance advantages would result from the adoption of the recommended policy set.
Resumo:
A description of the background to testing friction materials for automotive brakes explains the need for a rapid, inexpensive means of assessing their behaviour in a way which is both accurate and meaningful. Various methods of controlling inertia dynamometers to simulate road vehicles are rejected in favour of programming by means of a commercially available XY plotter. Investigation of brake service conditions is used to set up test schedules, and a dynamometer programming unit built to enable service conditions on vehicles to be simulated on a full scale dynamometer. A technique is developed by which accelerated testing can be achieved without operating under overload conditions, saving time and cost without sacrificing validity. The development of programming by XY plotter is described, with a method of operating one XY plotter to programme the machine, monitor its own behaviour, and plot its own results in logical sequence. Commissioning trials are described and the generation of reproducible results in frictional behaviour and material durability is discussed. Teclmiques are developed to cross check the operation of the machine in retrospect, and retrospectively correct results in the event of malfunctions. Sensitivity errors in the measuring circuits are displayed between calibrations, whilst leaving the recorded results almost unaffected by error. Typical results of brake lining tests are used to demonstrate the range of performance parameters which can be studied by use of the machine. Successful test investigations completed on the machine are reported, including comments on behaviour of cast iron drums and discs. The machine shows that materials can repeat their complex friction/ temperature/speed/pressure relationships at a reproducibility of the order of +-0.003u and +~ 0.0002 in. thickness loss during wear tests. Discussion of practical and academic implications completes the report with recommendations for further work in both fields.
Resumo:
The finite element process is now used almost routinely as a tool of engineering analysis. From early days, a significant effort has been devoted to developing simple, cost effective elements which adequately fulfill accuracy requirements. In this thesis we describe the development and application of one of the simplest elements available for the statics and dynamics of axisymmetric shells . A semi analytic truncated cone stiffness element has been formulated and implemented in a computer code: it has two nodes with five degrees of freedom at each node, circumferential variations in displacement field are described in terms of trigonometric series, transverse shear is accommodated by means of a penalty function and rotary inertia is allowed for. The element has been tested in a variety of applications in the statics and dynamics of axisymmetric shells subjected to a variety of boundary conditions. Good results have been obtained for thin and thick shell cases .
Resumo:
This work has concentrated on the testing of induction machines to determine their temperature rise at full-load without mechanically coupling to a load machine. The achievements of this work are outlined as follows. 1. Four distinct categories of mixed-frequency test using an inverter have been identified by the author. The simulation results of these tests as well as the conventional 2-supply test have been analysed in detail. 2. Experimental work on mixed-frequency tests has been done on a small (4 kW) squirrel cage induction machine using a voltage source PWM inverter. Two out of the four categories of test suggested have been tested and the temperature rise results were found to be similar to the results of a direct loading test. Further, one of the categories of test proposed has been performed on a 3.3 kW slip-ring induction machine for the conformation of the rotor values. 3. A low current supply mixed-frequency test-rig has been proposed. For this purpose, a resonant bank was connected to the DC link of the inverter in order to maintain the exchange of power between the test machine and the resonant bank instead of between the main supply and the test machine. The resonant bank was then replaced with a special electro-mechanical energy storage unit. The current of the main power supply was then reduced in amplitude. 4. A variable inertia test for full load temperature rise testing of induction machines has been introduced. This test is purely mechanical in nature and does not require any electrical connection of the test machine to any other machine. It has the advantage of drawing very little net power from the supply.
Resumo:
This research develops a low cost remote sensing system for use in agricultural applications. The important features of the system are that it monitors the near infrared and it incorporates position and attitude measuring equipment allowing for geo-rectified images to be produced without the use of ground control points. The equipment is designed to be hand held and hence requires no structural modification to the aircraft. The portable remote sensing system consists of an inertia measurement unit (IMU), which is accelerometer based, a low-cost GPS device and a small format false colour composite digital camera. The total cost of producing such a system is below GBP 3000, which is far cheaper than equivalent existing systems. The design of the portable remote sensing device has eliminated bore sight misalignment errors from the direct geo-referencing process. A new processing technique has been introduced for the data obtained from these low-cost devices, and it is found that using this technique the image can be matched (overlaid) onto Ordnance Survey Master Maps at an accuracy compatible with precision agriculture requirements. The direct geo-referencing has also been improved by introducing an algorithm capable of correcting oblique images directly. This algorithm alters the pixels value, hence it is advised that image analysis is performed before image georectification. The drawback of this research is that the low-cost GPS device experienced bad checksum errors, which resulted in missing data. The Wide Area Augmented System (WAAS) correction could not be employed because the satellites could not be locked onto whilst flying. The best GPS data were obtained from the Garmin eTrex (15 m kinematic and 2 m static) instruments which have a highsensitivity receiver with good lock on capability. The limitation of this GPS device is the inability to effectively receive the P-Code wavelength, which is needed to gain the best accuracy when undertaking differential GPS processing. Pairing the carrier phase L1 with the pseudorange C/A-Code received, in order to determine the image coordinates by the differential technique, is still under investigation. To improve the position accuracy, it is recommended that a GPS base station should be established near the survey area, instead of using a permanent GPS base station established by the Ordnance Survey.
Resumo:
Type 2 diabetes is a complex, progressive endocrine and metabolical disease that typically requires substantial lifestyle changes and multiple medications to lower blood glucose, reduce cardiovascular risk and address comorbidities. Despite an extensive range of available and effective treatments, <50% of patients achieve a glycaemical target of HbA <7.0% and about two-thirds die of premature cardiovascular disease. Adherence to prescribed therapies is an important factor in the management of type 2 diabetes that is often overlooked. Inadequate adherence to oral antidiabetes agents, defined as collecting <80% of prescribed medication, is variously estimated to apply to between 36% and 93% of patients. All studies affirm that a significant proportion of type 2 diabetes patients exhibit poor adherence that will contribute to less than desired control. Identified factors that impede adherence include complex dosing regimens, clinical inertia, safety concerns, socioeconomic issues, ethnicity, patient education and beliefs, social support and polypharmacy. This review explores these factors and potential strategies to improve adherence in patients with type 2 diabetes. © 2011 Blackwell Publishing Ltd.
Resumo:
Potential applications of high-damping and high-stiffness composites have motivated extensive research on the effects of negative-stiffness inclusions on the overall properties of composites. Recent theoretical advances have been based on the Hashin-Shtrikman composite models, one-dimensional discrete viscoelastic systems and a two-dimensional nested triangular viscoelastic network. In this paper, we further analyze the two-dimensional triangular structure containing pre-selected negative-stiffness components to study its underlying deformation mechanisms and stability. Major new findings are structure-deformation evolution with respect to the magnitude of negative stiffness under shear loading and the phenomena related to dissipation-induced destabilization and inertia-induced stabilization, according to Lyapunov stability analysis. The evolution shows strong correlations between stiffness anomalies and deformation modes. Our stability results reveal that stable damping peaks, i.e. stably extreme effective damping properties, are achievable under hydrostatic loading when the inertia is greater than a critical value. Moreover, destabilization induced by elemental damping is observed with the critical inertia. Regardless of elemental damping, when the inertia is less than the critical value, a weaker system instability is identified.
Magneto-vibratory separation of glass and bronze granular mixtures immersed in a paramagnetic liquid
Resumo:
A fluid-immersed granular mixture may spontaneously separate when subjected to vertical vibration, separation occurring when the ratio of particle inertia to fluid drag is sufficiently different between the component species of the mixture. Here, we describe how fluid-driven separation is influenced by magneto-Archimedes buoyancy, the additional buoyancy force experienced by a body immersed in a paramagnetic fluid when a strong inhomogeneous magnetic field is applied. In our experiments glass and bronze mixtures immersed in paramagnetic aqueous solutions of MnCl2 have been subjected to sinusoidal vertical vibration. In the absence of a magnetic field the separation is similar to that observed when the interstitial fluid is water. However, at modest applied magnetic fields, magneto-Archimedes buoyancy may balance the inertia/fluid-drag separation mechanism, or it may dominate the separation process. We identify the vibratory and magnetic conditions for four granular configurations, each having distinctive granular convection. Abrupt transitions between these states occur at well-defined values of the magnetic and vibrational parameters. In order to gain insight into the dynamics of the separation process we use computer simulations based on solutions of the Navier-Stokes' equations. The simulations reproduce the experimental results revealing the important role of convection and gap formation in the stability of the different states.
Resumo:
Energy dissipation and fatigue properties of nano-layered thin films are less well studied than bulk properties. Existing experimental methods for studying energy dissipation properties, typically using magnetic interaction as a driving force at different frequencies and a laser-based deformation measurement system, are difficult to apply to two-dimensional materials. We propose a novel experimental method to perform dynamic testing on thin-film materials by driving a cantilever specimen at its fixed end with a bimorph piezoelectric actuator and monitoring the displacements of the specimen and the actuator with a fibre-optic system. Upon vibration, the specimen is greatly affected by its inertia, and behaves as a cantilever beam under base excitation in translation. At resonance, this method resembles the vibrating reed method conventionally used in the viscoelasticity community. The loss tangent is obtained from both the width of a resonance peak and a free-decay process. As for fatigue measurement, we implement a control algorithm into LabView to maintain maximum displacement of the specimen during the course of the experiment. The fatigue S-N curves are obtained.
Resumo:
A recently introduced inference method based on system replication and an online message passing algorithm is employed to complete a previously suggested compression scheme based on a nonlinear perceptron. The algorithm is shown to approach the information theoretical bounds for compression as the number of replicated systems increases, offering superior performance compared to basic message passing algorithms. In addition, the suggested method does not require fine-tuning of parameters or other complementing heuristic techniques, such as the introduction of inertia terms, to improve convergence rates to nontrivial results. © 2014 American Physical Society.
Resumo:
Florida State University and University of Helsinki Information technology has the potential to deliver education to everybody by high quality online courses and associated services, and to enhance traditional face-to-face instruction by, e.g., web services offering virtually unlimited practice and step-bystep solutions to practice problems. Regardless of this, tools of information technology have not yet penetrated mathematics education in any meaningful way. This is mostly due to the inertia of academia: instructors are slow to change their working habits. This paper reports on an experiment where all the instructors (seven instructors and six teaching assistants) of a large calculus course were required to base their instruction on online content. The paper will analyze the effectiveness of various solutions used, and finishes with recommendations regarding best practices.
Resumo:
Large-scale mechanical products, such as aircraft and rockets, consist of large numbers of small components, which introduce additional difficulty for assembly accuracy and error estimation. Planar surfaces as key product characteristics are usually utilised for positioning small components in the assembly process. This paper focuses on assembly accuracy analysis of small components with planar surfaces in large-scale volume products. To evaluate the accuracy of the assembly system, an error propagation model for measurement error and fixture error is proposed, based on the assumption that all errors are normally distributed. In this model, the general coordinate vector is adopted to represent the position of the components. The error transmission functions are simplified into a linear model, and the coordinates of the reference points are composed by theoretical value and random error. The installation of a Head-Up Display is taken as an example to analyse the assembly error of small components based on the propagation model. The result shows that the final coordination accuracy is mainly determined by measurement error of the planar surface in small components. To reduce the uncertainty of the plane measurement, an evaluation index of measurement strategy is presented. This index reflects the distribution of the sampling point set and can be calculated by an inertia moment matrix. Finally, a practical application is introduced for validating the evaluation index.