840 resultados para Image-based cytometry
Resumo:
In model-based vision, there are a huge number of possible ways to match model features to image features. In addition to model shape constraints, there are important match-independent constraints that can efficiently reduce the search without the combinatorics of matching. I demonstrate two specific modules in the context of a complete recognition system, Reggie. The first is a region-based grouping mechanism to find groups of image features that are likely to come from a single object. The second is an interpretive matching scheme to make explicit hypotheses about occlusion and instabilities in the image features.
Resumo:
This paper describes a trainable system capable of tracking faces and facialsfeatures like eyes and nostrils and estimating basic mouth features such as sdegrees of openness and smile in real time. In developing this system, we have addressed the twin issues of image representation and algorithms for learning. We have used the invariance properties of image representations based on Haar wavelets to robustly capture various facial features. Similarly, unlike previous approaches this system is entirely trained using examples and does not rely on a priori (hand-crafted) models of facial features based on optical flow or facial musculature. The system works in several stages that begin with face detection, followed by localization of facial features and estimation of mouth parameters. Each of these stages is formulated as a problem in supervised learning from examples. We apply the new and robust technique of support vector machines (SVM) for classification in the stage of skin segmentation, face detection and eye detection. Estimation of mouth parameters is modeled as a regression from a sparse subset of coefficients (basis functions) of an overcomplete dictionary of Haar wavelets.
Resumo:
We describe a method for modeling object classes (such as faces) using 2D example images and an algorithm for matching a model to a novel image. The object class models are "learned'' from example images that we call prototypes. In addition to the images, the pixelwise correspondences between a reference prototype and each of the other prototypes must also be provided. Thus a model consists of a linear combination of prototypical shapes and textures. A stochastic gradient descent algorithm is used to match a model to a novel image by minimizing the error between the model and the novel image. Example models are shown as well as example matches to novel images. The robustness of the matching algorithm is also evaluated. The technique can be used for a number of applications including the computation of correspondence between novel images of a certain known class, object recognition, image synthesis and image compression.
Resumo:
We describe a technique for finding pixelwise correspondences between two images by using models of objects of the same class to guide the search. The object models are 'learned' from example images (also called prototypes) of an object class. The models consist of a linear combination ofsprototypes. The flow fields giving pixelwise correspondences between a base prototype and each of the other prototypes must be given. A novel image of an object of the same class is matched to a model by minimizing an error between the novel image and the current guess for the closest modelsimage. Currently, the algorithm applies to line drawings of objects. An extension to real grey level images is discussed.
Resumo:
We present an example-based learning approach for locating vertical frontal views of human faces in complex scenes. The technique models the distribution of human face patterns by means of a few view-based "face'' and "non-face'' prototype clusters. At each image location, the local pattern is matched against the distribution-based model, and a trained classifier determines, based on the local difference measurements, whether or not a human face exists at the current image location. We provide an analysis that helps identify the critical components of our system.
Resumo:
We have developed a technique called RISE (Random Image Structure Evolution), by which one may systematically sample continuous paths in a high-dimensional image space. A basic RISE sequence depicts the evolution of an object's image from a random field, along with the reverse sequence which depicts the transformation of this image back into randomness. The processing steps are designed to ensure that important low-level image attributes such as the frequency spectrum and luminance are held constant throughout a RISE sequence. Experiments based on the RISE paradigm can be used to address some key open issues in object perception. These include determining the neural substrates underlying object perception, the role of prior knowledge and expectation in object perception, and the developmental changes in object perception skills from infancy to adulthood.
Resumo:
We describe a system that learns from examples to recognize people in images taken indoors. Images of people are represented by color-based and shape-based features. Recognition is carried out through combinations of Support Vector Machine classifiers (SVMs). Different types of multiclass strategies based on SVMs are explored and compared to k-Nearest Neighbors classifiers (kNNs). The system works in real time and shows high performance rates for people recognition throughout one day.
Resumo:
A fundamental question in visual neuroscience is how to represent image structure. The most common representational schemes rely on differential operators that compare adjacent image regions. While well-suited to encoding local relationships, such operators have significant drawbacks. Specifically, each filter's span is confounded with the size of its sub-fields, making it difficult to compare small regions across large distances. We find that such long-distance comparisons are more tolerant to common image transformations than purely local ones, suggesting they may provide a useful vocabulary for image encoding. . We introduce the "Dissociated Dipole," or "Sticks" operator, for encoding non-local image relationships. This operator de-couples filter span from sub-field size, enabling parametric movement between edge and region-based representation modes. We report on the perceptual plausibility of the operator, and the computational advantages of non-local encoding. Our results suggest that non-local encoding may be an effective scheme for representing image structure.
Resumo:
We present a component-based approach for recognizing objects under large pose changes. From a set of training images of a given object we extract a large number of components which are clustered based on the similarity of their image features and their locations within the object image. The cluster centers build an initial set of component templates from which we select a subset for the final recognizer. In experiments we evaluate different sizes and types of components and three standard techniques for component selection. The component classifiers are finally compared to global classifiers on a database of four objects.
Resumo:
Understanding how the human visual system recognizes objects is one of the key challenges in neuroscience. Inspired by a large body of physiological evidence (Felleman and Van Essen, 1991; Hubel and Wiesel, 1962; Livingstone and Hubel, 1988; Tso et al., 2001; Zeki, 1993), a general class of recognition models has emerged which is based on a hierarchical organization of visual processing, with succeeding stages being sensitive to image features of increasing complexity (Hummel and Biederman, 1992; Riesenhuber and Poggio, 1999; Selfridge, 1959). However, these models appear to be incompatible with some well-known psychophysical results. Prominent among these are experiments investigating recognition impairments caused by vertical inversion of images, especially those of faces. It has been reported that faces that differ "featurally" are much easier to distinguish when inverted than those that differ "configurally" (Freire et al., 2000; Le Grand et al., 2001; Mondloch et al., 2002) ??finding that is difficult to reconcile with the aforementioned models. Here we show that after controlling for subjects' expectations, there is no difference between "featurally" and "configurally" transformed faces in terms of inversion effect. This result reinforces the plausibility of simple hierarchical models of object representation and recognition in cortex.
Resumo:
Building robust recognition systems requires a careful understanding of the effects of error in sensed features. Error in these image features results in a region of uncertainty in the possible image location of each additional model feature. We present an accurate, analytic approximation for this uncertainty region when model poses are based on matching three image and model points, for both Gaussian and bounded error in the detection of image points, and for both scaled-orthographic and perspective projection models. This result applies to objects that are fully three- dimensional, where past results considered only two-dimensional objects. Further, we introduce a linear programming algorithm to compute the uncertainty region when poses are based on any number of initial matches. Finally, we use these results to extend, from two-dimensional to three- dimensional objects, robust implementations of alignmentt interpretation- tree search, and ransformation clustering.
Resumo:
In the context of the round table the following topics related to image colour processing will be discussed: historical point of view. Studies of Aguilonius, Gerritsen, Newton and Maxwell. CIE standard (Commission International de lpsilaEclaraige). Colour models. RGB, HIS, etc. Colour segmentation based on HSI model. Industrial applications. Summary and discussion. At the end, video images showing the robustness of colour in front of B/W images will be presented
Resumo:
This paper describes a method to achieve the most relevant contours of an image. The presented method proposes to integrate the information of the local contours from chromatic components such as H, S and I, taking into account the criteria of coherence of the local contour orientation values obtained from each of these components. The process is based on parametrizing pixel by pixel the local contours (magnitude and orientation values) from the H, S and I images. This process is carried out individually for each chromatic component. If the criterion of dispersion of the obtained orientation values is high, this chromatic component will lose relevance. A final processing integrates the extracted contours of the three chromatic components, generating the so-called integrated contours image
Resumo:
This paper presents an automatic vision-based system for UUV station keeping. The vehicle is equipped with a down-looking camera, which provides images of the sea-floor. The station keeping system is based on a feature-based motion detection algorithm, which exploits standard correlation and explicit textural analysis to solve the correspondence problem. A visual map of the area surveyed by the vehicle is constructed to increase the flexibility of the system, allowing the vehicle to position itself when it has lost the reference image. The testing platform is the URIS underwater vehicle. Experimental results demonstrating the behavior of the system on a real environment are presented
Resumo:
Detecting changes between images of the same scene taken at different times is of great interest for monitoring and understanding the environment. It is widely used for on-land application but suffers from different constraints. Unfortunately, Change detection algorithms require highly accurate geometric and photometric registration. This requirement has precluded their use in underwater imagery in the past. In this paper, the change detection techniques available nowadays for on-land application were analyzed and a method to automatically detect the changes in sequences of underwater images is proposed. Target application scenarios are habitat restoration sites, or area monitoring after sudden impacts from hurricanes or ship groundings. The method is based on the creation of a 3D terrain model from one image sequence over an area of interest. This model allows for synthesizing textured views that correspond to the same viewpoints of a second image sequence. The generated views are photometrically matched and corrected against the corresponding frames from the second sequence. Standard change detection techniques are then applied to find areas of difference. Additionally, the paper shows that it is possible to detect false positives, resulting from non-rigid objects, by applying the same change detection method to the first sequence exclusively. The developed method was able to correctly find the changes between two challenging sequences of images from a coral reef taken one year apart and acquired with two different cameras