923 resultados para Image quality perception


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mammography is a diagnostic imaging method in which interpretation depends on knowledge of radiological aspects as well as the clinical exam and pathophysiology of breast diseases. In this work a mammography phantom was developed to be used for training in the operation of mammographic x-ray equipment, image quality evaluation, self-examination and clinical examination of palpation. Polyurethane was used for the production of the phantoms for its physical and chemical properties and because it is one of the components normally used in prostheses. According to the range of flexibility of the polyurethane, it was possible to simulate breasts with higher or lower amount of adipose tissue. Pathologies such as areolar necrosis and tissue rejection due to surgery reconstruction after partial mastectomy were also simulated. Calcifications and nodules were simulated using the following materials: polyethylene, poly (methyl methacrylate), polyamide, polyurethane and poly (dimethyl silicone). Among these, polyethylene was able to simulate characteristics of calcification as well as breast nodules. The results from mammographic techniques used in this paper for the evaluation of the phantoms are in agreement with data found in the literature. The image analyses of four phantoms indicated significant similarities with the human skin texture and the female breast parenchyma. It was possible to detect in the radiographic images produced regions of high and low radiographic optical density, which are characteristic of breasts with regions of different amount of adipose tissue. The stiffnesses of breast phantoms were adjusted according to the formulation of the polyurethane which enabled the production of phantoms with distinct radiographic features and texture similar to human female breast parenchyma. Clinical palpation exam of the phantoms developed in this work indicated characteristics similar to human breast in skin texture, areolar region and parenchyma

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Mecânica, 2016.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent advances in mobile phone cameras have poised them to take over compact hand-held cameras as the consumer’s preferred camera option. Along with advances in the number of pixels, motion blur removal, face-tracking, and noise reduction algorithms have significant roles in the internal processing of the devices. An undesired effect of severe noise reduction is the loss of texture (i.e. low-contrast fine details) of the original scene. Current established methods for resolution measurement fail to accurately portray the texture loss incurred in a camera system. The development of an accurate objective method to identify the texture preservation or texture reproduction capability of a camera device is important in this regard. The ‘Dead Leaves’ target has been used extensively as a method to measure the modulation transfer function (MTF) of cameras that employ highly non-linear noise-reduction methods. This stochastic model consists of a series of overlapping circles with radii r distributed as r−3, and having uniformly distributed gray level, which gives an accurate model of occlusion in a natural setting and hence mimics a natural scene. This target can be used to model the texture transfer through a camera system when a natural scene is captured. In the first part of our study we identify various factors that affect the MTF measured using the ‘Dead Leaves’ chart. These include variations in illumination, distance, exposure time and ISO sensitivity among others. We discuss the main differences of this method with the existing resolution measurement techniques and identify the advantages. In the second part of this study, we propose an improvement to the current texture MTF measurement algorithm. High frequency residual noise in the processed image contains the same frequency content as fine texture detail, and is sometimes reported as such, thereby leading to inaccurate results. A wavelet thresholding based denoising technique is utilized for modeling the noise present in the final captured image. This updated noise model is then used for calculating an accurate texture MTF. We present comparative results for both algorithms under various image capture conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Image and video compression play a major role in the world today, allowing the storage and transmission of large multimedia content volumes. However, the processing of this information requires high computational resources, hence the improvement of the computational performance of these compression algorithms is very important. The Multidimensional Multiscale Parser (MMP) is a pattern-matching-based compression algorithm for multimedia contents, namely images, achieving high compression ratios, maintaining good image quality, Rodrigues et al. [2008]. However, in comparison with other existing algorithms, this algorithm takes some time to execute. Therefore, two parallel implementations for GPUs were proposed by Ribeiro [2016] and Silva [2015] in CUDA and OpenCL-GPU, respectively. In this dissertation, to complement the referred work, we propose two parallel versions that run the MMP algorithm in CPU: one resorting to OpenMP and another that converts the existing OpenCL-GPU into OpenCL-CPU. The proposed solutions are able to improve the computational performance of MMP by 3 and 2:7 , respectively. The High Efficiency Video Coding (HEVC/H.265) is the most recent standard for compression of image and video. Its impressive compression performance, makes it a target for many adaptations, particularly for holoscopic image/video processing (or light field). Some of the proposed modifications to encode this new multimedia content are based on geometry-based disparity compensations (SS), developed by Conti et al. [2014], and a Geometric Transformations (GT) module, proposed by Monteiro et al. [2015]. These compression algorithms for holoscopic images based on HEVC present an implementation of specific search for similar micro-images that is more efficient than the one performed by HEVC, but its implementation is considerably slower than HEVC. In order to enable better execution times, we choose to use the OpenCL API as the GPU enabling language in order to increase the module performance. With its most costly setting, we are able to reduce the GT module execution time from 6.9 days to less then 4 hours, effectively attaining a speedup of 45 .

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A Ressonância Magnética (RM) é uma técnica capaz de obter informação relativa à anatomia, fisiologia e fisiopatologia de órgãos internos de um modo não invasivo, permitindo a deteção precoce e caracterização das doenças, contribuindo para a decisão terapêutica. As suas características podem causar ansiedade nos pacientes, levando a uma diminuição da qualidade das imagens radiológicas, resultados falaciosos/inconclusivos e desistência dos pacientes. Neste âmbito, foram realizados dois estudos. O primeiro para validar os instrumentos utilizados. O segundo, exploratório, procurou aprofundar conhecimento sobre a ansiedade associada à realização de RM, relacionando-a com variáveis como o número de vezes que o paciente realizou o exame, as diferentes categorias do exame e o conhecimento prévio do doente sobre este. No primeiro estudo, demonstrou-se a validade dos instrumentos aplicados. No segundo, corroboram-se algumas hipóteses e foi possível compreender o funcionamento das variáveis na presente amostra, demonstrando que são necessários estudos mais aprofundados sobre o tema; ABSTRACT: Magnetic Resonance Imaging (MRI) is a technique to obtain information about the anatomy, physiology and pathophysiology of internal organs of a noninvasively way, allowing the early detection and characterization of the diseases, contributing to the therapeutic decision. The characteristics of this exam may cause anxiety in patients, leading to a decrease in radiological images quality, fallacious/inconclusive results and patient withdrawal. In this context, two studies were conducted. The first to validate the instruments used. The second, exploratory, sought to deepen knowledge about the anxiety associated with MRI, relating it to variables such as the number of times the patient underwent the examination, the different categories of MRI, and previous knowledge about the MRI. In the first study, the validity of the applied instruments was demonstrated. In the second, some hypotheses were corroborated and allowed us to understand the functioning of the variables in the present sample, demonstrating the need for more in-depth studies on the subject.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objectives CO2-EVAR was proposed for treatment of AAA especially in patients with CKD. Issues regarding standardization, such as visualization of lowest renal artery (LoRA) and quality image in angiographies performed from pigtail or introducer-sheath, are still unsolved. Aim of the study was to analyze different steps of CO2-EVAR to create an operative protocol to standardize the procedure. Methods Patients undergoing CO2-EVAR were prospectively enrolled in 5 European centers (2018-2021). CO2-EVAR was performed using an automated injector. LoRA visualization and image quality (1-4) were analyzed and compared at different procedure steps: preoperative CO2-angiography from Pigtail/Introducer-sheath (1st Step), angiographies from Pigtail at 0%,50%,100% main body (MB) deployment (2nd Step), contralateral hypogastric artery (CHA) visualization with CO2 injection from femoral Introducer-sheath (3rd Step) and completion angiogram from Pigtail/Introducer-sheath (4th Step). Intra-/postoperative adverse events were evaluated. Results Sixty-five patients undergoing CO2-EVAR were enrolled, 55/65(84.5%) male, median age 75(11.5) years. Median ICM was 20(54)cc; 19/65(29.2%) procedures were performed with 0-iodine. 1st Step: median image quality was significantly higher with CO2 injected from femoral introducer [Pigtail2(3)vs.3(3)Introducer,p=.008]. 2nd Step: LoRA was more frequently detected at 50% (93%vs.73.2%, p=.002) and 100% (94.1%vs.78.4%, p=.01) of MB deployment compared with first angiography from Pigtail; image quality was significantly higher at 50% [3(3)vs.2(3),p=<.001] and 100% [4(3) vs.2(3),p=.001] of MB deployment. CHA was detected in 93% cases (3rd Step). Mean image quality was significantly higher when final angiogram (4th Step) was performed from introducer (Pigtail2.6±1.1vs.3.1±0.9Introducer,p=<.001). Rates of intra-/postoperative adverse events (pain,vomit,diarrhea) were 7.7% and 12.5%. Conclusions Preimplant CO2-angiography should be performed from Introducer-sheath. MB steric bulk during its deployment should be used to improve image quality and LoRA visualization with CO2. CHA can be satisfactorily visualized with CO2. Completion CO2-angiogram should be performed from femoral Introducer-sheath. This operative protocol allows to perform CO2-EVAR with minimal ICM and low rate of mild complications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Digital Breast Tomosynthesis (DBT) is an advanced mammography technique based on the reconstruction of a pseudo-volumetric image. To date, image quality represents the most deficient section of DBT quality control protocols. In fact, related tests are not yet characterized by either action levels or typical values. This thesis work focuses on the evaluation of one aspect of image quality: the z-resolution. The latter is studied in terms of Artifact Spread Function (ASF), a function that describes the signal spread of a detail along the reconstructed focal planes. To quantify the ASF numerically, its Full Width at Half Maximum (FWHM) is calculated and used as a representative index of z-resolution. Experimental measurements were acquired in 24 DBT systems, of 7 different models, currently in use in 20 hospital facilities in Italy. The analysis, performed on the clinical reconstructed images, of 5 different commercial phantoms, lead to the identification of characteristic FWHM values for each type of DBT system. The ASF clearly showed a dependence on the size of the detail, providing higher FWHM values for larger objects. The z-resolution was found to be positively influenced by the acquisition angle: Fujifilm sistematically showed wider ASF profiles in ST mode (15°) than in HR mode (40°). However, no clear relationship was found between angular range and ASF, among different DBT systems, due to the influence of the peculiarities of each reconstruction algorithm. The experimental approach shown in this thesis work can be proposed as a z-resolution quality control test procedure. Contextually, the values found could be used as a starting point for identifying typical values to be included in the test, in a DBT protocol. Clearly, a statistically significant number of images is needed to do this. The equipment involved in this work is located in hospitals and is not available for research purposes, so only a limited amount of data was acquired and processed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The project aims to experiment the Cone Beam Breast Computed Tomography technique using a standard digital mammography system. The work is focused on the definition of a protocol of quality measurements for the pre-clinical evaluation of the machine. The paper is developed in two parts. The first is specifically concerned with the methods used to define the image quality and dosimetry aspects specific for digital mammography devices. A complete characterization of the system has been performed according to the applicable IEC standards to assure the performances of the equipment and define the quality levels. Due to the lack of a quality control protocol dedicated to CBBCT mammography scanner, a new equivalent test procedure has been proposed. The second part of the paper is focused on the evaluation, through quantitative and visual analyzes, of the CBCT exam feasibility in the hardware and software conditions currently proposed by IMS Giotto. The prototype was in fact developed differing from the technical choices of competing companies and developed for a different intended use. The main difference with respect to the existing breast CT scanners is the possibility of performing on the same system the CBBCT scanning but also all the mammographic techniques. In this thesis, we aim to assess whether, in the current setup, considering a dosimetric range very close to that used in the clinic, the tests produce results that can be considered acceptable or at least indicative of the feasibility of the entire project from a commercial point of view. For this purpose, the final reconstruction images, obtained by two previously developed software, are analyzed.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

La medida de calidad de vídeo sigue siendo necesaria para definir los criterios que caracterizan una señal que cumpla los requisitos de visionado impuestos por el usuario. Las nuevas tecnologías, como el vídeo 3D estereoscópico o formatos más allá de la alta definición, imponen nuevos criterios que deben ser analizadas para obtener la mayor satisfacción posible del usuario. Entre los problemas detectados durante el desarrollo de esta tesis doctoral se han determinado fenómenos que afectan a distintas fases de la cadena de producción audiovisual y tipo de contenido variado. En primer lugar, el proceso de generación de contenidos debe encontrarse controlado mediante parámetros que eviten que se produzca el disconfort visual y, consecuentemente, fatiga visual, especialmente en lo relativo a contenidos de 3D estereoscópico, tanto de animación como de acción real. Por otro lado, la medida de calidad relativa a la fase de compresión de vídeo emplea métricas que en ocasiones no se encuentran adaptadas a la percepción del usuario. El empleo de modelos psicovisuales y diagramas de atención visual permitirían ponderar las áreas de la imagen de manera que se preste mayor importancia a los píxeles que el usuario enfocará con mayor probabilidad. Estos dos bloques se relacionan a través de la definición del término saliencia. Saliencia es la capacidad del sistema visual para caracterizar una imagen visualizada ponderando las áreas que más atractivas resultan al ojo humano. La saliencia en generación de contenidos estereoscópicos se refiere principalmente a la profundidad simulada mediante la ilusión óptica, medida en términos de distancia del objeto virtual al ojo humano. Sin embargo, en vídeo bidimensional, la saliencia no se basa en la profundidad, sino en otros elementos adicionales, como el movimiento, el nivel de detalle, la posición de los píxeles o la aparición de caras, que serán los factores básicos que compondrán el modelo de atención visual desarrollado. Con el objetivo de detectar las características de una secuencia de vídeo estereoscópico que, con mayor probabilidad, pueden generar disconfort visual, se consultó la extensa literatura relativa a este tema y se realizaron unas pruebas subjetivas preliminares con usuarios. De esta forma, se llegó a la conclusión de que se producía disconfort en los casos en que se producía un cambio abrupto en la distribución de profundidades simuladas de la imagen, aparte de otras degradaciones como la denominada “violación de ventana”. A través de nuevas pruebas subjetivas centradas en analizar estos efectos con diferentes distribuciones de profundidades, se trataron de concretar los parámetros que definían esta imagen. Los resultados de las pruebas demuestran que los cambios abruptos en imágenes se producen en entornos con movimientos y disparidades negativas elevadas que producen interferencias en los procesos de acomodación y vergencia del ojo humano, así como una necesidad en el aumento de los tiempos de enfoque del cristalino. En la mejora de las métricas de calidad a través de modelos que se adaptan al sistema visual humano, se realizaron también pruebas subjetivas que ayudaron a determinar la importancia de cada uno de los factores a la hora de enmascarar una determinada degradación. Los resultados demuestran una ligera mejora en los resultados obtenidos al aplicar máscaras de ponderación y atención visual, los cuales aproximan los parámetros de calidad objetiva a la respuesta del ojo humano. ABSTRACT Video quality assessment is still a necessary tool for defining the criteria to characterize a signal with the viewing requirements imposed by the final user. New technologies, such as 3D stereoscopic video and formats of HD and beyond HD oblige to develop new analysis of video features for obtaining the highest user’s satisfaction. Among the problems detected during the process of this doctoral thesis, it has been determined that some phenomena affect to different phases in the audiovisual production chain, apart from the type of content. On first instance, the generation of contents process should be enough controlled through parameters that avoid the occurrence of visual discomfort in observer’s eye, and consequently, visual fatigue. It is especially necessary controlling sequences of stereoscopic 3D, with both animation and live-action contents. On the other hand, video quality assessment, related to compression processes, should be improved because some objective metrics are adapted to user’s perception. The use of psychovisual models and visual attention diagrams allow the weighting of image regions of interest, giving more importance to the areas which the user will focus most probably. These two work fields are related together through the definition of the term saliency. Saliency is the capacity of human visual system for characterizing an image, highlighting the areas which result more attractive to the human eye. Saliency in generation of 3DTV contents refers mainly to the simulated depth of the optic illusion, i.e. the distance from the virtual object to the human eye. On the other hand, saliency is not based on virtual depth, but on other features, such as motion, level of detail, position of pixels in the frame or face detection, which are the basic features that are part of the developed visual attention model, as demonstrated with tests. Extensive literature involving visual comfort assessment was looked up, and the development of new preliminary subjective assessment with users was performed, in order to detect the features that increase the probability of discomfort to occur. With this methodology, the conclusions drawn confirmed that one common source of visual discomfort was when an abrupt change of disparity happened in video transitions, apart from other degradations, such as window violation. New quality assessment was performed to quantify the distribution of disparities over different sequences. The results confirmed that abrupt changes in negative parallax environment produce accommodation-vergence mismatches derived from the increasing time for human crystalline to focus the virtual objects. On the other side, for developing metrics that adapt to human visual system, additional subjective tests were developed to determine the importance of each factor, which masks a concrete distortion. Results demonstrated slight improvement after applying visual attention to objective metrics. This process of weighing pixels approximates the quality results to human eye’s response.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The applicability of image calibration to like-values in mapping water quality parameters from multitemporal images is explored, Six sets of water samples were collected at satellite overpasses over Moreton Bay, Brisbane, Australia. Analysis of these samples reveals that waters in this shallow bay are mostly TSS-dominated, even though they are occasionally dominated by chlorophyll as well. Three of the images were calibrated to a reference image based on invariant targets. Predictive models constructed from the reference image were applied to estimating total suspended sediment (TSS) and Secchi depth from another image at a discrepancy of around 35 percent. Application of the predictive model for TSS concentration to another image acquired at a time of different water types resulted in a discrepancy of 152 percent. Therefore, image calibration to like-values could be used to reliably map certain water quality parameters from multitemporal TM images so long as the water type under study remains unchanged. This method is limited in that the mapped results could be rather inaccurate if the water type under study has changed considerably. Thus, the approach needs to be refined in shallow water from multitemporal satellite imagery.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Perceptual voice analysis is a subjective process. However, despite reports of varying degrees of intrajudge and interjudge reliability, it is widely used in clinical voice evaluation. One of the ways to improve the reliability of this procedure is to provide judges with signals as external standards so that comparison can be made in relation to these anchor signals. The present study used a Klatt speech synthesizer to create a set of speech signals with varying degree of three different voice qualities based on a Cantonese sentence. The primary objective of the study was to determine whether different abnormal voice qualities could be synthesized using the built-in synthesis parameters using a perceptual study. The second objective was to determine the relationship between acoustic characteristics of the synthesized signals and perceptual judgment. Twenty Cantonese-speaking speech pathologists with at least three years of clinical experience in perceptual voice evaluation were asked to undertake two tasks. The first was to decide whether the voice quality of the synthesized signals was normal or not. The second was to decide whether the abnormal signals should be described as rough, breathy, or vocal fry. The results showed that signals generated with a small degree of aspiration noise were perceived as breathiness while signals with a small degree of flutter or double pulsing were perceived as roughness. When the flutter or double pulsing increased further, tremor and vocal fry, rather than roughness, were perceived. Furthermore, the amount of aspiration noise, flutter, or double pulsing required for male voice stimuli was different from that required for the female voice stimuli with a similar level of perceptual breathiness and roughness. These findings showed that changes in perceived vocal quality could be achieved by systematic modifications of synthesis parameters. This opens up the possibility of using synthesized voice signals as external standards or anchors to improve the reliability of clinical perceptual voice evaluation. (C) 2002 Acoustical Society of America.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the last decades, the value of research on neurological patients’ quality of life (QOL) has become unquestionable. In this context, most studies focus on the relationship between patients’ QOL and their sociodemographic and/or clinical and/or modifiable psychosocial characteristics. They give us information regarding the sociodemographic and clinical profile most prone to low QOL reports and also on ways to improve patients’ QOL (e.g., targeting their selfesteem). Nevertheless, little is known about the role nonmodifiable psychosocial variables can have on patients’ QOL perception. Consequently, the aim of the present study is to explore the relationship between QOL and personality in neurological patients.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: We examined body image perception and its association with reported weight-control behavior among adolescents in the Seychelles.METHODS: We conducted a school-based survey of 1432 students aging 11-17 years in the Seychelles. Perception of body image was assessed using both a closed-ended question (CEQ) and Stunkard's pictorial silhouettes (SPS). Voluntary attempts to change weight were also assessed.RESULTS: A substantial proportion of the overweight students did not consider themselves as overweight (SPS: 24%, CEQ: 34%), and a substantial proportion of the normal-weight students considered themselves as too thin (SPS: 29%, CEQ: 15%). Logistic regression analysis showed that students with an accurate weight perception were more likely to have appropriate weight-control behavior.CONCLUSIONS: We found that substantial proportions of students had an inaccurate perception of their weight and that weight perception was associated with weight-control behavior. These findings point to forces that can drive the upwards overweight trends.