1000 resultados para Image hyperspectrale
Resumo:
We address the problem of face recognition by matching image sets. Each set of face images is represented by a subspace (or linear manifold) and recognition is carried out by subspace-to-subspace matching. In this paper, 1) a new discriminative method that maximises orthogonality between subspaces is proposed. The method improves the discrimination power of the subspace angle based face recognition method by maximizing the angles between different classes. 2) We propose a method for on-line updating the discriminative subspaces as a mechanism for continuously improving recognition accuracy. 3) A further enhancement called locally orthogonal subspace method is presented to maximise the orthogonality between competing classes. Experiments using 700 face image sets have shown that the proposed method outperforms relevant prior art and effectively boosts its accuracy by online learning. It is shown that the method for online learning delivers the same solution as the batch computation at far lower computational cost and the locally orthogonal method exhibits improved accuracy. We also demonstrate the merit of the proposed face recognition method on portal scenarios of multiple biometric grand challenge.
Resumo:
A modular image capture system with close integration to CCD cameras has been developed. The aim is to produce a system capable of integrating CCD sensor, image capture and image processing into a single compact unit. This close integration provides a direct mapping between CCD pixels and digital image pixels. The system has been interfaced to a digital signal processor board for the development and control of image processing tasks. These have included characterization and enhancement of noisy images from an intensified camera and measurement to subpixel resolutions. A highly compact form of the image capture system is in an advanced stage of development. This consists of a single FPGA device and a single VRAM providing a two chip image capturing system capable of being integrated into a CCD camera. A miniature compact PC has been developed using a novel modular interconnection technique, providing a processing unit in a three dimensional format highly suited to integration into a CCD camera unit. Work is under way to interface the compact capture system to the PC using this interconnection technique, combining CCD sensor, image capture and image processing into a single compact unit. ©2005 Copyright SPIE - The International Society for Optical Engineering.
Resumo:
Ultrasound elastography tracks tissue displacements under small levels of compression to obtain images of strain, a mechanical property useful in the detection and characterization of pathology. Due to the nature of ultrasound beamforming, only tissue displacements in the direction of beam propagation, referred to as 'axial', are measured to high quality, although an ability to measure other components of tissue displacement is desired to more fully characterize the mechanical behavior of tissue. Previous studies have used multiple one-dimensional (1D) angled axial displacements tracked from steered ultrasound beams to reconstruct improved quality trans-axial displacements within the scan plane ('lateral'). We show that two-dimensional (2D) displacement tracking is not possible with unmodified electronically-steered ultrasound data, and present a method of reshaping frames of steered ultrasound data to retain axial-lateral orthogonality, which permits 2D displacement tracking. Simulated and experimental ultrasound data are used to compare changes in image quality of lateral displacements reconstructed using 1D and 2D tracked steered axial and steered lateral data. Reconstructed lateral displacement image quality generally improves with the use of 2D displacement tracking at each steering angle, relative to axial tracking alone, particularly at high levels of compression. Due to the influence of tracking noise, unsteered lateral displacements exhibit greater accuracy than axial-based reconstructions at high levels of applied strain. © 2011 SPIE.