978 resultados para Identical Mutations


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The genome of Salmonella enterica serovar Enteritidis was shown to possess three IS3-like insertion elements, designated IS1230A, B and C, and each was cloned and their respective deoxynucleotide sequences determined. Mutations in elements IS1230A and B resulted in frameshifts in the open reading frames that encoded a putative transposase to be inactive. IS1230C was truncated at nucleotide 774 relative to IS1230B and therefore did not possess the 3' terminal inverted repeat. The three IS1230 derivatives were closely related to each other based on nucleotide sequence similarity. IS1230A was located adjacent to the sef operon encoding SEF14 fimbriae located at minute 97 of the genome of S. Enteritidis. IS1230B was located adjacent to the umuDC operon at minute 42.5 on the genome, itself located near to one terminus of an 815-kb genome inversion of S. Enteritidis relative to S. Typhimurium. IS1230C was located next to attB, the bacteriophage P22 attachment site, and proB, encoding gamma-glutamyl phosphate reductase. A truncated 3' remnant of IS1230, designated IS1230T, was identified in a clinical isolate of S. Typhimurium DT193 strain 2391. This element was located next to attB adjacent to which were bacteriophage P22-like sequences. Southern hybridisation of total genomic DNA from eighteen phage types of S. Enteritidis and eighteen definitive types of S. Typhimurium showed similar, if not identical, restriction fragment profiles in the respective serovars when probed with IS1230A.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A LightCycler-based PCR-hybridization gyrA mutation assay (GAMA) was developed to rapidly detect gyrA point mutations in multiresistant (MR) Salmonella enterica serotype Typhimurium DT104 with decreased susceptibility to ciprofloxacin (MIC, 0.25 to 1.0 mg/liter). Ninety-two isolates (49 human, 43 animal) were tested with three individual oligonucleotide probes directed against an Asp-87-to-Asn (GAC --> AAC) mutation, an Asp-87-to-Gly (GAC --> GGC) mutation, and a Ser-83-to-Phe (TCC --> TTC) mutation. Strains homologous to the probes could be distinguished from strains that had different mutations by their probe-target melting temperatures. Thirty-seven human and 30 animal isolates had an Asp-87-to-Asn substitution, 6 human and 6 animal isolates had a Ser-83-to-Phe substitution, and 5 human and 2 animal isolates had an Asp-87-to-Gly substitution. The remaining six strains all had mismatches with the three probes and therefore different gyrA mutations. The sequencing of gyrA from these six isolates showed that one human strain and two animal strains had an Asp-87-to-Tyr (GAC --> TAC) substitution and two animal strains had a Ser-83-to-Tyr (TCC --> TAC) substitution. One animal strain had no gyrA mutation, suggesting that this isolate had a different mechanism of resistance. Fifty-eight of the strains tested were indistinguishable by several different typing methods including antibiograms, pulsed-field gel gel electrophoresis, and plasmid profiling, although they could be further subdivided according to gyrA mutation. This study confirmed that MR DT104 with decreased susceptibility to ciprofloxacin from humans and food animals in England and Wales may have arisen independently against a background of clonal spread of MR DT104.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Denaturing high-performance liquid chromatography (DHPLC) was evaluated as a rapid screening and identification method for DNA sequence variation detection in the quinolone resistance-determining region of gyrA from Salmonella serovars. A total of 203 isolates of Salmonella were screened using this method. DHPLC analysis of 14 isolates representing each type of novel or multiple mutations and the wild type were compared with LightCycler-based PCR-gyrA hybridization mutation assay (GAMA) and single-strand conformational polymorphism (SSCP) analyses. The 14 isolates gave seven different SSCP patterns, and LightCycler detected four different mutations. DHPLC detected 11 DNA sequence variants at eight different codons, including those detected by LightCycler or SSCP. One of these mutations was silent. Five isolates contained multiple mutations, and four of these could be distinguished from the composite sequence variants by their DHPLC profile. Seven novel mutations were identified at five different loci not previously described in quinolone-resistant salmonella. DHPLC analysis proved advantageous for the detection of novel and multiple mutations. DHPLC also provides a rapid, high-throughput alternative to LightCycler and SSCP for screening frequently occurring mutations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Salmonella enterica isolates (n = 182) were examined for mutations in the quinolone resistance-determining region of gyrA, gyrB, parC, and parE. The frequency, location, and type of GyrA substitution varied with the serovar. Mutations were found in parC that encoded Thr57-Ser, Thr66-Ile, and Ser80-Arg substitutions. Mutations in the gyrB quinolone resistance-determining region were located at codon Tyr420-Cys or Arg437-Len. Novel mutations were also found in parE encoding Glu453-Gly, His461-Tyr, Ala498-Thr, Val512-Gly, and Ser518-Cys. Although it is counterintuitive, isolates with a mutation in both gyrA and parC were more susceptible to ciprofloxacin than were isolates with a mutation in gyrA alone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enterohemorrhagic Escherichia coli (EHEC) strains comprise a broad group of bacteria, some of which cause attaching and effacing (AE) lesions and enteritis in humans and animals. Non-O157:H7 EHEC strains contain the gene efa-1 (referred to in previous publications as efa1), which influences adherence to cultured epithelial cells. An almost identical gene in enteropathogenic E. coli (lifA) mediates the inhibition of lymphocyte proliferation and proinflammatory cytokine synthesis. We have shown previously that significantly lower numbers of EHEC 05 and 0111 efa-1 mutants are shed in feces following experimental infection in calves and that these mutants exhibit reduced adherence to intestinal epithelia compared with isogenic wild-type strains. E. coli O157:H7 strains lack efa-1 but encode a homolog on the pO157 plasmid (toxB/l7095) and contain a truncated version of the efa-1 gene (efa-1'/z4332 in O island 122 of the EDL933 chromosome). Here we report that E. coli O157:H7 toxB and efa-1' single and double mutants exhibit reduced adherence to cultured epithelial cells and show reduced expression and secretion of proteins encoded by the locus of enterocyte effacement (LEE), which plays a key role in the host-cell interactions of EHEC. The activity of LEE1, LEE4, and LEE5 promoters was not significantly altered in E. coli O157:H7 strains harboring toxB or efa-1' mutations, indicating that the effect on the expression of LEE-encoded secreted proteins occurs at a posttranscriptional level. Despite affecting type III secretion, mutation of toxB and efa-1' did not significantly affect the course of fecal shedding of E. coli O157:H7 following experimental inoculation of 10- to 14-day-old calves or 6-week-old sheep. Mutation of tir caused a significant reduction in fecal shedding of E. coli O157:H7 in calves, indicating that the formation of AE lesions is important for colonization of the bovine intestine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: Quinolone antibiotics are the agents of choice for treating systemic Salmonella infections. Resistance to quinolones is usually mediated by mutations in the DNA gyrase gene gyrA. Here we report the evaluation of standard HPLC equipment for the detection of mutations (single nucleotide polymorphisms; SNPs) in gyrA, gyrB, parC and parE by denaturing high performance liquid chromatography (DHPLC). Methods: A panel of Salmonella strains was assembled which comprised those with known different mutations in gyrA (n = 8) and fluoroquinolone-susceptible and -resistant strains (n = 50) that had not been tested for mutations in gyrA. Additionally, antibiotic-susceptible strains of serotypes other than Salmonella enterica serovar Typhimurium strains were examined for serotype-specific mutations in gyrB (n = 4), parC (n = 6) and parE (n = 1). Wild-type (WT) control DNA was prepared from Salmonella Typhimurium NCTC 74. The DNA of respective strains was amplified by PCR using Optimase (R) proofreading DNA polymerase. Duplex DNA samples were analysed using an Agilent A1100 HPLC system with a Varian Helix (TM) DNA column. Sequencing was used to validate mutations detected by DHPLC in the strains with unknown mutations. Results: Using this HPLC system, mutations in gyrA, gyrB, parC and parE were readily detected by comparison with control chromatograms. Sequencing confirmed the gyrA predicted mutations as detected by DHPLC in the unknown strains and also confirmed serotype-associated sequence changes in non-Typhimurium serotypes. Conclusions: The results demonstrated that a non-specialist standard HPLC machine fitted with a generally available column can be used to detect SNPs in gyrA, gyrB, parC and parE genes by DHPLC. Wider applications should be possible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: To determine the efficacy of enrofloxacin (Baytril) in chickens in eradicating three different resistance phenotypes of Salmonella enterica and to examine the resistance mechanisms of resulting mutants. Methods: In two separate replicate experiments (I and 11), three strains of Salmonella enterica serovar Typhimurium DT104 [strain A, fully antibiotic-sensitive strain; strain B, isogenic multiple antibiotic-resistant (MAR) derivative of A; strain C, veterinary penta-resistant phenotype strain containing GyrA Phe-83], were inoculated into day-old chicks at similar to 10(3) Cfu/bird. At day 10, groups of chicks (n =10) were given either enrofloxacin at 50 ppm in their drinking water for 5 days or water alone (control). Caecal contents were monitored for presence of Salmonella and colonies were replica plated to media containing antibiotics or overlaid with cyclohexane to determine the proportion of isolates with reduced susceptibility. The MICs of antibiotics and cyclohexane tolerance were determined for selected isolates from the chicks. Mutations in topoisomerase genes were examined by DHPLC and expression of marA, soxS, acrB, acrD and acrF by RT-PCR. Results: In experiment 1, but not 11, enrofloxacin significantly reduced the numbers of strain A compared with the untreated control group. In experiment 11, but not 1, enrofloxacin significantly reduced the numbers of strain B. Shedding of strain C was unaffected by enrofloxacin treatment. Birds infected with strains A and B gave rise to isolates with decreased fluoroquinolone susceptibility. Isolates derived from strain A or B requiring > 128 mg/L nalidixic acid for inhibition contained GyrA Asn-82 or Phe-83. Isolates inhibited by 16 mg/L nalidixic acid were also less susceptible to antibiotics of other chemical classes and became cyclohexane-tolerant (e.g. MAR). Conclusions: These studies demonstrate that recommended enrofloxacin treatment of chicks rapidly selects for strains with reduced fluoroquinolone susceptibility from fully sensitive and MAR strains. It can also select for MAR isolates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recent identification of multiple dominant mutations in the gene encoding β-catenin in both humans and mice has enabled exploration of the molecular and cellular basis of β-catenin function in cognitive impairment. In humans, β-catenin mutations that cause a spectrum of neurodevelopmental disorders have been identified. We identified de novo β-catenin mutations in patients with intellectual disability, carefully characterized their phenotypes, and were able to define a recognizable intellectual disability syndrome. In parallel, characterization of a chemically mutagenized mouse line that displays features similar to those of human patients with β-catenin mutations enabled us to investigate the consequences of β-catenin dysfunction through development and into adulthood. The mouse mutant, designated batface (Bfc), carries a Thr653Lys substitution in the C-terminal armadillo repeat of β-catenin and displayed a reduced affinity for membrane-associated cadherins. In association with this decreased cadherin interaction, we found that the mutation results in decreased intrahemispheric connections, with deficits in dendritic branching, long-term potentiation, and cognitive function. Our study provides in vivo evidence that dominant mutations in β-catenin underlie losses in its adhesion-related functions, which leads to severe consequences, including intellectual disability, childhood hypotonia, progressive spasticity of lower limbs, and abnormal craniofacial features in adults

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: In 2009, CTX-M Enterobacteriaceae and Salmonella isolates were recovered from a UK pig farm, prompting studies into the dissemination of the resistance and to establish any relationships between the isolates. METHODS: PFGE was used to elucidate clonal relationships between isolates whilst plasmid profiling, restriction analysis, sequencing and PCR were used to characterize the CTX-M-harbouring plasmids. RESULTS: Escherichia coli, Klebsiella pneumoniae and Salmonella 4,5,12:i:- and Bovismorbificans resistant to cefotaxime (n = 65) were recovered and 63 were shown by PCR to harbour a group 1 CTX-M gene. The harbouring hosts were diverse, but the group 1 CTX-M plasmids were common. Three sequenced CTX-M plasmids from E. coli, K. pneumoniae and Salmonella enterica serotype 4,5,12:i:- were identical except for seven mutations and highly similar to IncI1 plasmid ColIb-P9. Two antimicrobial resistance regions were identified: one inserted upstream of yacABC harbouring ISCR2 transposases, sul2 and floR; and the other inserted within shfB of the pilV shufflon harbouring the ISEcp1 transposase followed by blaCTX-M-1. CONCLUSIONS: These data suggest that an ST108 IncI1 plasmid encoding a blaCTX-M-1 gene had disseminated across multiple genera on this farm, an example of horizontal gene transfer of the blaCTX-M-1 gene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anticoagulants rodenticides have already known for over half a century, as effective and safe method of rodent control. However, discovered in 1958 anticoagulant resistance has given us a very important problem for their future long-term use. Laboratory tests provide the main method for identification the different types of anticoagulant resistances, quantify the magnitude of their effect and help us to choose the best pest control strategy. The main important tests are lethal feeding period (LFP) and blood clotting response (BCR) tests. These tests can now be used to quantify the likely effect of the resistance on treatment outcome by providing an estimate of the ‘resistance factor’. In 2004 the gene responsible for anticoagulant resistance (VKORC1) was identified and sequenced. As a result, a new molecular resistance testing methodology has been developed, and a number of resistance mutations, particularly in Norway rats and house mice. Three mutations of the VKORC1 gene in Norway rats have been identified to date that confer a degree of resistance to bromadiolone and difenacoum, sufficient to affect treatment outcome in the field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

LRRK2 is one of the most important genetic contributors to Parkinson’s disease (PD). Point mutations in this gene cause an autosomal dominant form of PD, but to date no cellular phenotype has been consis- tently linked with mutations in each of the functional domains (ROC, COR and Kinase) of the protein product of this gene. In this study, primary fibroblasts from individuals carrying pathogenic mutations in the three central domains of LRRK2 were assessed for alterations in the autophagy/lysosomal pathway using a combination of biochemical and cellular approaches. Mutations in all three domains resulted in alterations in markers for autophagy/lysosomal function compared to wild type cells. These data high- light the autophagy and lysosomal pathways as read outs for pathogenic LRRK2 function and as a marker for disease, and provide insight into the mechanisms linking LRRK2 function and mutations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Age-related decline in the integrity of mitochondria is an important contributor to the human ageing process. In a number of ageing stem cell populations, this decline in mitochondrial function is due to clonal expansion of individual mitochondrial DNA (mtDNA) point mutations within single cells. However the dynamics of this process and when these mtDNA mutations occur initially are poorly understood. Using human colorectal epithelium as an exemplar tissue with a well-defined stem cell population, we analysed samples from 207 healthy participants aged 17-78 years using a combination of techniques (Random Mutation Capture, Next Generation Sequencing and mitochondrial enzyme histochemistry), and show that: 1) non-pathogenic mtDNA mutations are present from early embryogenesis or may be transmitted through the germline, whereas pathogenic mtDNA mutations are detected in the somatic cells, providing evidence for purifying selection in humans, 2) pathogenic mtDNA mutations are present from early adulthood (<20 years of age), at both low levels and as clonal expansions, 3) low level mtDNA mutation frequency does not change significantly with age, suggesting that mtDNA mutation rate does not increase significantly with age, and 4) clonally expanded mtDNA mutations increase dramatically with age. These data confirm that clonal expansion of mtDNA mutations, some of which are generated very early in life, is the major driving force behind the mitochondrial dysfunction associated with ageing of the human colorectal epithelium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Virus capsids are primed for disassembly, yet capsid integrity is key to generating a protective immune response. Foot-and-mouth disease virus (FMDV) capsids comprise identical pentameric protein subunits held together by tenuous noncovalent interactions and are often unstable. Chemically inactivated or recombinant empty capsids, which could form the basis of future vaccines, are even less stable than live virus. Here we devised a computational method to assess the relative stability of protein-protein interfaces and used it to design improved candidate vaccines for two poorly stable, but globally important, serotypes of FMDV: O and SAT2. We used a restrained molecular dynamics strategy to rank mutations predicted to strengthen the pentamer interfaces and applied the results to produce stabilized capsids. Structural analyses and stability assays confirmed the predictions, and vaccinated animals generated improved neutralizing-antibody responses to stabilized particles compared to parental viruses and wild-type capsids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evolved resistance to fungicides is a major problem limiting our ability to control agricultural, medical and veterinary pathogens and is frequently associated with substitutions in the amino acid sequence of the target protein. The convention for describing amino-acid substitutions is to cite the wild type amino acid, the codon number and the new amino acid, using the one letter amino acid code. It has frequently been observed that orthologous amino acid mutations have been selected in different species by fungicides from the same mode of action class, but the amino acids have different numbers. These differences in numbering arise from the different lengths of the proteins in each species. The purpose of the current paper is to propose a system for unifying the labelling of amino acids in fungicide target proteins. To do this we have produced alignments between fungicide target proteins of relevant species fitted to a well-studied “archetype” species. Orthologous amino acids in all species are then assigned numerical “labels” based on the position of the amino acid in the archetype protein.