972 resultados para INTRAPERITONEAL LPS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is considerable interest in the development of vaccination strategies that would elicit strong tumor-specific CTL responses in cancer patients. One strategy consists of using recombinant viruses encoding amino acid sequences corresponding to natural CTL-defined peptide from tumor Ags as immunogens. However, studies with synthetic tumor antigenic peptides have demonstrated that introduction of single amino acid substitutions may dramatically increase their immunogenicity. In this study we have used a well-defined human melanoma tumor Ag system to test the possibility of translating the immunological potency of synthetic tumor antigenic peptide analogues into recombinant vaccinia viruses carrying constructs with the appropriate nucleotide substitutions. Our results indicate that the use of a mutated minigene construct directing the expression of a modified melanoma tumor Ag leads to improved Ag recognition and, more importantly, to enhanced immunogenicity. Thus, recombinant vaccinia viruses containing mutated minigene sequences may lead to new strategies for the induction of strong tumor-specific CTL responses in cancer patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To test whether endotoxin decreases blood pressure acutely in rats by activating the plasma kinin-forming system, plasma kallikrein activity was determined in different experimental settings of endotoxemia. Conscious normotensive rats were infused for 45 min with endotoxin (LPS E. coli 0111:B4) at a dose (0.01 mg/min) which had no effect on blood pressure. Additional rats were infused with the vehicle of endotoxin. Plasma prekallikrein activity was measured at the end of the 45 min infusions. In other rats, a bolus intravenous injection of endotoxin (2 mg) was administered following the 45 min infusion of endotoxin or its vehicle. In these two latter groups of rats, plasma prekallikrein activity was determined 15 min after administration of the bolus dose of endotoxin. In rats pretreated with the endotoxin infusion, the bolus dose of endotoxin had no significant effect on blood pressure, whereas rats infused with the vehicle became and remained hypotensive up to the end of the experiment. There was however no significant difference in plasma prekallikrein activity within the different groups of rats. In another group of rats, dextran sulfate (0.25 mg i.v.), which activates factor XII and thereby the conversion of prekallikrein to kallikrein, induced a short-lasting fall in blood pressure. 15 min after administration of dextran sulfate, plasma prekallikrein activity was almost completely suppressed. These results obtained in unanesthetized rats strongly suggest that the blood pressure fall induced by E. coli endotoxin is not due to activation of prekallikrein and consequently of the kinin-forming system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Growth Arrest-Specific Gene 6 product (Gas6) is, like anticoagulant protein C, a vitamin K-dependent protein. Our aim was to determine whether Gas6 plays a role in sepsis. Materials and methods: We submitted mice lacking Gas6 (Gas6)/)) or one of its receptors (Axl)/), Tyro3)/) or Mertk)/)) to LPS-induced endotoxemia and peritonitis (cecal ligation and puncture (CLP) and inoculation of E. coli). In addition, we measured Gas6 or its soluble receptors in plasma of eight volunteers that received LPS, 13 healthy subjects, 28 patients with severe sepsis, and 18 patients with non-infectious inflammatory diseases. Results: Gas6 and its soluble receptor sAxl raised in mice models and TNF-a was more elevated in Gas6)/) mice than in wild-type (WT). Protein array showed that before and after LPS injection, titers of 62 cytokines were more elevated in plasma of Gas6)/) than WT mice. Endotoxemia-induced mortality was higher in Gas6)/), Axl)/), Tyro3)/) and Mertk)/) compared to WT mice and mortality subsequent to CLP was amplified in Gas6)/) mice. LPS-stimulated Gas6)/) macrophages produced more cytokines than WT macrophages. This production was dampened by recombinant Gas6. Phosphorylation of Akt in Gas6)/) macrophages was reduced, but p38 phosphorylation and NF-jB translocation were increased. In human, Gas6 raised in plasma after LPS (2 ng/kg). Gas6 and sAxl were higher in patients with severe sepsis than in healthy subjects or control patients, and there was a non-significant trend for higher Gas6 in the survival group. Conclusions: Our data point to Gas6 as a major modulator of innate immunity and provide thereby novel insights into the mechanism of sepsis. Thus Gas6 and its receptors might constitute potential therapeutic targets for the development of new immunomodulating drugs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: To investigate the involvement of the cornea during endotoxin-induced uveitis (EIU) in the rat and the effect of Ngamma-nitro-L-arginine methyl ester (L-NAME) as nitric oxide synthase (NOS) inhibitor, administered by iontophoresis. METHODS: EIU was induced in Lewis rats that were killed at 8 and 16 hours after lipopolysaccharide (LPS) injection. The severity of uveitis was evaluated clinically at 16 hours, and nitrite levels were evaluated in the aqueous humor at 8 hours. Corneal thickness was measured, 16 hours after LPS injection, on histologic sections using an image analyzer. Transmission electron microscopy (TEM) was used for fine analysis of the cornea. Transcorneoscleral iontophoresis of L-NAME (100 mM) was performed either at LPS injection or at 1 and 2 hours after LPS injection. RESULTS: At 16 hours after LPS injection, mean corneal thickness was 153.7+/-5.58 microm in the group of rats injected with LPS (n=8) compared with 126.89+/-11.11 microm in the saline-injected rats (n=8) (P < 0.01). TEM showed stromal edema and signs of damage in the endothelial and epithelial layers. In the group of rats treated by three successive iontophoreses of L-NAME (n=8), corneal thickness was 125.24+/-10.36 microm compared with 146.76+/-7.52 microm in the group of rats treated with iontophoresis of saline (n=8), (P=0.015). TEM observation showed a reduction of stromal edema and a normal endothelium. Nitrite levels in the aqueous humor were significantly reduced at 8 hours by L-NAME treatment (P=0.03). No effect on corneal edema was observed after a single iontophoresis of L-NAME at LPS injection (P=0.19). Iontophoresis of saline by itself induced no change in corneal thickness nor in TEM structure analysis compared with normal rats. CONCLUSIONS: Corneal edema is observed during EIU. This edema is significantly reduced by three successive iontophoreses of L-NAME, which partially inhibited the inflammation. A role of nitric oxide in the corneal endothelium functions may explain the antiedematous effect of L-NAME.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background. Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) has been shown to modulate multiple cellular processes, including apoptosis. The aim of this study was to assess the effects of HCV NS5A on apoptosis induced by Toll-like receptor (TLR) 4 ligand, lipopolysaccharide (LPS). Methods. Apoptotic responses to TLR4 ligands and the expression of molecules involved in TLR signaling pathways in human hepatocytes were examined with or without expression of HCV NS5A. Results. HCV NS5A protected HepG2 hepatocytes against LPS-induced apoptosis, an effect linked to reduced TLR4 expression. A similar downregulation of TLR4 expression was observed in Huh-7-expressing genotype 1b and 2a. In agreement with these findings, NS5A inhibited the expression of numerous genes encoding for molecules involved in TLR4 signaling, such as CD14, MD-2, myeloid differentiation primary response gene 88, interferon regulatory factor 3, and nuclear factor-κB2. Consistent with a conferred prosurvival advantage, NS5A diminished the poly(adenosine diphosphate-ribose) polymerase cleavage and the activation of caspases 3, 7, 8, and 9 and increased the expression of anti-apoptotic molecules Bcl-2 and c-FLIP. Conclusions. HCV NS5A downregulates TLR4 signaling and LPS-induced apoptotic pathways in human hepatocytes, suggesting that disruption of TLR4-mediated apoptosis may play a role in the pathogenesis of HCV infection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Résumé Introduction et hypothèse : Certains acides gras polyinsaturés de type n-3 PUFA, qui sont contenus dans l'huile de poisson, exercent des effets non-énergétiques (fluidité des membranes cellulaires, métabolisme énergétique et prostanoïdes, régulation génique de la réponse inflammatoire). Les mécanismes de la modulation de cette dernière sont encore mal connus. L'administration d'endotoxine (LPS) induit chez les volontaires sains une affection inflammatoire aiguë, comparable à un état grippal, associé à des modifications métaboliques et inflammatoires transitoires, similaires au sepsis. Ce modèle est utilisé de longue date pour l'investigation clinique expérimentale. Cette étude examine les effets d'une supplémentation orale d'huile de poisson sur la réponse inflammatoire (systémique et endocrinienne) de sujets sains soumis à une injection d'endotoxine. L'hypothèse était que la supplémentation d'huile de poisson réduirait les réponses physiologiques à l'endotoxine. Méthodes : Quinze volontaires masculins (âge 26.0±3.1 ans) ont participé à une étude randomisée, contrôlée. Les sujets sont désignés au hasard à recevoir ou non une supplémentation orale : 7.2 g d'huile de poisson par jour correspondant à un apport de 1.1 g/jour d'acides gras 20:5 (n-3, acide écosapentaénoïque) et 0.7 g/jour de 22:6 (n-3, acide docosahexaénoïque). Chaque sujet est investigué deux fois dans des conditions identiques : une fois il reçoit une injection de 2 ng par kg poids corporel de LPS intraveineuse, l'autre fois une injection de placebo. Les variables suivantes sont relevées avant l'intervention et durant les 360 min qui suivent l'injection :signes vitaux, dépense énergétique (EE) et utilisation nette des substrats (calorimétrie indirecte, cinétique du glucose (isotopes stables), taux plasmatique des triglycérides et FFA, du glucose, ainsi que des cytokines et hormones de stress (ACTH, cortisol, Adré, Nor-Adré). Analyses et statistiques :moyennes, déviations standards, analyse de variance (one way, test de Scheffé), différences significatives entre les groupes pour une valeur de p < 0.05. Résultats :L'injection de LPS provoque une augmentation de la température, de la fréquence cardiaque, de la dépense d'énergie et de l'oxydation nette des lipides. On observe une élévation des taux plasmatiques de TNF-a et IL-6, de la glycémie, ainsi qu'une élévation transitoire des concentrations plasmatiques des hormones de stress ACTH, cortisol, adrénaline et noradrénaline. L'huile de poisson atténue significativement la fièvre, la réponse neuro-endocrinienne (ACTH et cortisol) et sympathique (baisse de la noradrénaline plasmatique). Par contre, les taux des cytokines ne sont pas influencés par la supplémentation d'huile de poisson. Conclusion : La supplémentation d'huile de poisson atténue la réponse physiologique à l'endotoxine chez le sujet sain, en particulier la fièvre et la réponse endocrinienne, sans influencer la production des cytokines. Ces résultats soutiennent l'hypothèse que les effets bénéfiques de l'huile de poisson sont principalement caractérisés au niveau du système nerveux central, par des mécanismes non-inflammatoires qui restent encore à élucider.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine produced by many cells and tissues including pancreatic beta-cells, liver, skeletal muscle, and adipocytes. This study investigates the potential role of MIF in carbohydrate homeostasis in a physiological setting outside of severe inflammation, utilizing Mif knockout (MIF-/-) mice. Compared with wild-type (WT) mice, MIF-/- mice had a lower body weight, from birth until 4 months of age, but subsequently gained weight faster, resulting in a higher body weight at 12 months of age. The lower weight in young mice was related to a higher energy expenditure, and the higher weight in older mice was related to an increased food intake and a higher fat mass. Fasting blood insulin level was higher in MIF-/- mice compared with WT mice at any age. After i.p. glucose injection, the elevation of blood insulin level was higher in MIF-/- mice compared with WT mice, at 2 months of age, but was lower in 12-month-old MIF-/- mice. As a result, the glucose clearance during intraperitoneal glucose tolerance tests was higher in MIF-/- mice compared with WT mice until 4 months of age, and was lower in 12-month-old MIF-/- mice. Insulin resistance was estimated (euglycemic-hyperinsulinemic clamp tests), and the phosphorylation activity of AKT was similar in MIF-/- mice and WT mice. In conclusion, this mouse model provides evidence for the role of MIF in the control of glucose homeostasis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study addressed the contribution of acidic sphingomyelinase (ASMase) in TNF-alpha-mediated hepatocellular apoptosis. Cultured hepatocytes depleted of mitochondrial glutathione (mGSH) became sensitive to TNF-alpha, undergoing a time-dependent apoptotic cell death preceded by mitochondrial membrane depolarization, cytochrome c release, and caspase activation. Cyclosporin A treatment rescued mGSH-depleted hepatocytes from TNF-alpha-induced cell death. In contrast, mGSH-depleted hepatocytes deficient in ASMase were resistant to TNF-alpha-mediated cell death but sensitive to exogenous ASMase. Furthermore, although in vivo administration of TNF-alpha or LPS to galactosamine-pretreated ASMase(+/+) mice caused liver damage, ASMase(-/-) mice exhibited minimal hepatocellular injury. To analyze the requirement of ASMase, we assessed the effect of glucosylceramide synthetase inhibition on TNF-alpha-mediated apoptosis. This approach, which blunted glycosphingolipid generation by TNF-alpha, protected mGSH-depleted ASMase(+/+) hepatocytes from TNF-alpha despite enhancement of TNF-alpha-stimulated ceramide formation. To further test the involvement of glycosphingolipids, we focused on ganglioside GD3 (GD3) because of its emerging role in apoptosis through interaction with mitochondria. Analysis of the cellular redistribution of GD3 by laser scanning confocal microscopy revealed the targeting of GD3 to mitochondria in ASMase(+/+) but not in ASMase(-/-) hepatocytes. However, treatment of ASMase(-/-) hepatocytes with exogenous ASMase induced the colocalization of GD3 and mitochondria. Thus, ASMase contributes to TNF-alpha-induced hepatocellular apoptosis by promoting the mitochondrial targeting of glycosphingolipids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background. Microglia and astrocytes respond to homeostatic disturbances with profound changes of gene expression. This response, known as glial activation or neuroinflammation, can be detrimental to the surrounding tissue. The transcription factor CCAAT/enhancer binding protein ß (C/EBPß) is an important regulator of gene expression in inflammation but little is known about its involvement in glial activation. To explore the functional role of C/EBPß in glial activation we have analyzed pro-inflammatory gene expression and neurotoxicity in murine wild type and C/EBPß-null glial cultures. Methods. Due to fertility and mortality problems associated with the C/EBPß-null genotype we developed a protocol to prepare mixed glial cultures from cerebral cortex of a single mouse embryo with high yield. Wild-type and C/EBPß-null glial cultures were compared in terms of total cell density by Hoechst-33258 staining; microglial content by CD11b immunocytochemistry; astroglial content by GFAP western blot; gene expression by quantitative real-time PCR, western blot, immunocytochemistry and Griess reaction; and microglial neurotoxicity by estimating MAP2 content in neuronal/microglial cocultures. C/EBPß DNA binding activity was evaluated by electrophoretic mobility shift assay and quantitative chromatin immunoprecipitation. Results. C/EBPß mRNA and protein levels, as well as DNA binding, were increased in glial cultures by treatment with lipopolysaccharide (LPS) or LPS + interferon ¿ (IFN¿). Quantitative chromatin immunoprecipitation showed binding of C/EBPß to pro-inflammatory gene promoters in glial activation in a stimulus- and gene-dependent manner. In agreement with these results, LPS and LPS+IFN¿ induced different transcriptional patterns between pro-inflammatory cytokines and NO synthase-2 genes. Furthermore, the expressions of IL-1ß and NO synthase-2, and consequent NO production, were reduced in the absence of C/EBPß. In addition, neurotoxicity elicited by LPS+IFN¿-treated microglia co-cultured with neurons was completely abolished by the absence of C/EBPß in microglia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Multiple Sclerosis (MS) is an acquired inflammatory demyelinating disorder of the central nervous system (CNS) and is the leading cause of nontraumatic disability among young adults. Activated microglial cells are important effectors of demyelination and neurodegeneration, by secreting cytokines and others neurotoxic agents. Previous studies have demonstrated that microglia expresses ATP-sensitive potassium (KATP) channels and its pharmacological activation can provide neuroprotective and anti-inflammatory effects. In this study, we have examined the effect of oral administration of KATP channel opener diazoxide on induced experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. Methods Anti-inflammatory effects of diazoxide were studied on lipopolysaccharide (LPS) and interferon gamma (IFNy)-activated microglial cells. EAE was induced in C57BL/6J mice by immunization with myelin oligodendrocyte glycoprotein peptide (MOG35-55). Mice were orally treated daily with diazoxide or vehicle for 15 days from the day of EAE symptom onset. Treatment starting at the same time as immunization was also assayed. Clinical signs of EAE were monitored and histological studies were performed to analyze tissue damage, demyelination, glial reactivity, axonal loss, neuronal preservation and lymphocyte infiltration. Results Diazoxide inhibited in vitro nitric oxide (NO), tumor necrosis factor alpha (TNF-¿) and interleukin-6 (IL-6) production and inducible nitric oxide synthase (iNOS) expression by activated microglia without affecting cyclooxygenase-2 (COX-2) expression and phagocytosis. Oral treatment of mice with diazoxide ameliorated EAE clinical signs but did not prevent disease. Histological analysis demonstrated that diazoxide elicited a significant reduction in myelin and axonal loss accompanied by a decrease in glial activation and neuronal damage. Diazoxide did not affect the number of infiltrating lymphocytes positive for CD3 and CD20 in the spinal cord. Conclusion Taken together, these results demonstrate novel actions of diazoxide as an anti-inflammatory agent, which might contribute to its beneficial effects on EAE through neuroprotection. Treatment with this widely used and well-tolerated drug may be a useful therapeutic intervention in ameliorating MS disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hybridoma cell line ZAC3 expresses Vibrio cholerae lipopolysaccharide (LPS)-specific mouse IgA molecules as a heterogeneous population of monomeric (IgAm), dimeric (IgAd), and polymeric (IgAp) forms. We describe a gentle method combining ultrafiltration, ion-exchange chromatography, and size exclusion chromatography for the simultaneous and qualitative separation of the three molecular forms. Milligram quantities of purified IgA molecules were recovered allowing for direct comparison of the biological properties of the three forms. LPS binding specificity was tested after purification; IgAd and IgAp were found to bind strongly to LPS whereas IgAm did not. Secretory IgA (sIgA) could be reconstituted in vitro by combining recombinant secretory component (rSC) and purified IgAd or IgAp, but not IgAm. Surface plasmon resonance-based binding experiments using LPS monolayers indicated that purified reconstituted sIgA and IgA molecules recognize LPS with identical affinity (KA 1.0 x 10(8)M-1). Thus, this very sensitive assay provides the first evidence that the function of SC in sIgA complex is not to modify the affinity for the antigen. KA falls to 6.6 x 10(5) M-1 when measured by calorimetry using detergent-solubilized LPS and IgA, suggesting that the LPS environment is critical for recognition by the antibody.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: Chronic activation of the nuclear factor-kappaB (NF-kappaB) in white adipose tissue leads to increased production of pro-inflammatory cytokines, which are involved in the development of insulin resistance. It is presently unknown whether peroxisome proliferator-activated receptor (PPAR) beta/delta activation prevents inflammation in adipocytes. RESEARCH DESIGN AND METHODS AND RESULTS: First, we examined whether the PPARbeta/delta agonist GW501516 prevents lipopolysaccharide (LPS)-induced cytokine production in differentiated 3T3-L1 adipocytes. Treatment with GW501516 blocked LPS-induced IL-6 expression and secretion by adipocytes and the subsequent activation of the signal transducer and activator of transcription 3 (STAT3)-Suppressor of cytokine signaling 3 (SOCS3) pathway. This effect was associated with the capacity of GW501516 to impede LPS-induced NF-kappaB activation. Second, in in vivo studies, white adipose tissue from Zucker diabetic fatty (ZDF) rats, compared with that of lean rats, showed reduced PPARbeta/delta expression and PPAR DNA-binding activity, which was accompanied by enhanced IL-6 expression and NF-kappaB DNA-binding activity. Furthermore, IL-6 expression and NF-kappaB DNA-binding activity was higher in white adipose tissue from PPARbeta/delta-null mice than in wild-type mice. Because mitogen-activated protein kinase-extracellular signal-related kinase (ERK)1/2 (MEK1/2) is involved in LPS-induced NF-kappaB activation in adipocytes, we explored whether PPARbeta/delta prevented NF-kappaB activation by inhibiting this pathway. Interestingly, GW501516 prevented ERK1/2 phosphorylation by LPS. Furthermore, white adipose tissue from animal showing constitutively increased NF-kappaB activity, such as ZDF rats and PPARbeta/delta-null mice, also showed enhanced phospho-ERK1/2 levels. CONCLUSIONS: These findings indicate that activation of PPARbeta/delta inhibits enhanced cytokine production in adipocytes by preventing NF-kappaB activation via ERK1/2, an effect that may help prevent insulin resistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: Our laboratory has previously established in vitro that a caspase-generated RasGAP NH(2)-terminal moiety, called fragment N, potently protects cells, including insulinomas, from apoptotic stress. We aimed to determine whether fragment N can increase the resistance of pancreatic beta-cells in a physiological setting. RESEARCH DESIGN AND METHODS: A mouse line, called rat insulin promoter (RIP)-N, was generated that bears a transgene containing the rat insulin promoter followed by the cDNA-encoding fragment N. The histology, functionality, and resistance to stress of RIP-N islets were then assessed. RESULTS: Pancreatic beta-cells of RIP-N mice express fragment N, activate Akt, and block nuclear factor kappaB activity without affecting islet cell proliferation or the morphology and cellular composition of islets. Intraperitoneal glucose tolerance tests revealed that RIP-N mice control their glycemia similarly as wild-type mice throughout their lifespan. Moreover, islets isolated from RIP-N mice showed normal glucose-induced insulin secretory capacities. They, however, displayed increased resistance to apoptosis induced by a series of stresses including inflammatory cytokines, fatty acids, and hyperglycemia. RIP-N mice were also protected from multiple low-dose streptozotocin-induced diabetes, and this was associated with reduced in vivo beta-cell apoptosis. CONCLUSIONS: Fragment N efficiently increases the overall resistance of beta-cells to noxious stimuli without interfering with the physiological functions of the cells. Fragment N and the pathway it regulates represent, therefore, a potential target for the development of antidiabetes tools.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The CIAO Study is a multicenter observational study currently underway in 66 European medical institutions over the course of a six-month study period (January-June 2012).This preliminary report overviews the findings of the first half of the study, which includes all data from the first three months of the six-month study period.Patients with either community-acquired or healthcare-associated complicated intra-abdominal infections (IAIs) were included in the study.912 patients with a mean age of 54.4 years (range 4-98) were enrolled in the study during the first three-month period. 47.7% of the patients were women and 52.3% were men. Among these patients, 83.3% were affected by community-acquired IAIs while the remaining 16.7% presented with healthcare-associated infections. Intraperitoneal specimens were collected from 64.2% of the enrolled patients, and from these samples, 825 microorganisms were collectively identified.The overall mortality rate was 6.4% (58/912). According to univariate statistical analysis of the data, critical clinical condition of the patient upon hospital admission (defined by severe sepsis and septic shock) as well as healthcare-associated infections, non-appendicular origin, generalized peritonitis, and serious comorbidities such as malignancy and severe cardiovascular disease were all significant risk factors for patient mortality.White Blood Cell counts (WBCs) greater than 12,000 or less than 4,000 and core body temperatures exceeding 38°C or less than 36°C by the third post-operative day were statistically significant indicators of patient mortality.