642 resultados para INSTABILITIES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Nd and Sr isotopic compositions of Quaternary glacial and glacimarine siliciclastic sediments deposited along the margin of southeast Greenland were determined to assess the roles of the Greenland, Iceland, and more distal ice sheets in delivering detritus to this portion of the northern North Atlantic. The isotopic compositions of detritus generated by portions of the southern Greenland Ice Sheet were defined through measurements of till and trough mouth fan sediments. Massive diamicts from the Scoresby Sund trough mouth fan show a restricted range of e-Nd (-11.8 to -16.6) and 87Sr/86Sr (0.7192-0.7246) consistent with their derivation from mixtures of sediments derived from Paleoproterozoic and/or Caledonian basement and Tertiary Greenland basalts. Further south at Kangerlussuaq, till isotopic compositions covary with the underlying basement type, with low e-Nd values in the inner fiord (-18.1) reflecting the erosion of the local Precambrian gneisses, but with higher e-Nd values (-2.3 to 2.5) found where the trough crosses East Greenland Tertiary basalts. Fine-grained (< 63 µm) sediments deposited along the southeast Greenland margin also show regular spatial isotopic variations. Ambient sediments and ice-rafted detritus in the southern Irminger Basin trend towards low e-Nd values (to ~ -28) and 87Sr/86Sr ratios (~ 0.711 to ~ 0.715) and are likely derived from proximal Archean gneisses of SE Greenland. Further north in the northern Irminger and Blosseville Basins, sediments trend toward much higher e-Nd (> -4) and low 87Sr/86Sr (< 0.709) reflecting a component derived from the local Iceland volcanic rocks and/or the East Greenland Tertiary basalts. In all three regions, the locally-derived detritus is intermixed with sediment with an intermediate e-Nd value (~ -10) and 87Sr/86Sr (~ 0.718) that was likely delivered by icebergs emanating from the Eurasian Ice Sheets and not from eastern Greenland. Deposition of glacial sediments from both proximal and distal (Eurasian) sources occurred adjacent to SE Greenland throughout the past 50 Ka, with periodic increases in IRD deposition at various times including those of Heinrich events 1, 2 and 4. These results suggest that at least the southern portions of the Greenland Ice Sheet experienced periodic instabilities during the Last Glacial period.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stable isotopic data of calcareous nannofossil, monogeneric and monospecific planktic and benthic foraminifera from five Indian Ocean DSDP sites (212, 217, 220, 237, and 253), leads to the following paleoclimatic and paleoceanographic conclusions: - The latest Cretaceous oxygen isotopic record implies a cooling (3-4°C) during the Maastrichtian. At the Cretaceous/Tertiary boundary only a minor warming (about 2°C) has been recorded. The parallel delta13C decrease of more than 1? indicates a significant decrease in productivity. - During the latest Paleocene a positive delta13C excursion was detected in Sites 217 and 237. This transient enrichment in delta13C may be due to productivity changes on continents and/or a change in the storage rate of organic matter in marginal basins or shelf areas. - The most striking feature in the oxygen isotopic record is noted at the Early/Middle Eocene transition. The shift towards more positive values (which were probably enhanced to a certain extent by a preceding diagenetic alteration) delineates a dramatic climatic deterioration at high and mid latitudes during the earlier Tertiary. - Near the Eocene/Oligocene boundary a cooling is evident within the latest Eocene interval. During the earliest Oligocene time a hiatus at Sites 217 and 253 partially obscures the climatic record. - Several climatic fluctuations have been noted during the Oligocene: a cooling at the base of Zone NP 23, a warming at the top of Zone NP 23 through NP 24, and a cooling during Zone NP 25. - The Miocene oxygen isotopic record is dominated by changes in surface and bottom water environments during Zone NN5. The decreasing and then increasing delta18O values, together with the subsequent steepening of the vertical delta18O gradient, point towards major climatic instabilities. These events coincide with the Mid-Miocene build-up of Antarctic ice-sheets. During the latest Miocene to the earliest Pliocene the delta18O record of planktic foraminifera indicates a significant warming of the Indian Ocean at mid-latitudes. - The delta13C record during the Oligocene and Miocene reveals several cycles (delta13C enrichments: NP 24, NN2, NN5, NN9, and base NN 11) which are most likely related to changes in storage rates of organic matter and biological productivity due to climatic changes and transgression/regression cycles. In addition, changes in the circulation patterns may also have influenced the carbon isotopic record.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A sediment core from the western tropical Atlantic covering the last 21,000 yr has been analysed for centennial scale reconstruction of sea surface temperature (SST) and ice volume-corrected oxygen isotopic composition of sea water (delta18O(ivc-sw)) using Mg / Ca and delta18O of the shallow dwelling planktonic foraminifer Globigerinoides ruber (white). At a period between 15.5 and 17.5 kyr BP, the Mg / Ca SST and delta18O(ivc-sw), a proxy for sea surface salinity (SSS), reveals a warming of around 2.5 °C along with an increase in salinity. A second period of pronounced warming and SSS increase occurred between 11.6 and 13.5 kyr BP. Within age model uncertainties, both warming intervals were synchronous with air temperature increase over Antarctica and ice retreat in the southern South Atlantic and terminated with abrupt centennial scale SSS decrease and slight SST cooling in conjunction with interglacial reactivation of the meridional overturning circulation (MOC). We suggest that during these warm intervals, production of saline and warm water of the North Brazil Current resulted in pronounced heat and salt accumulation, and was associated with warming in the southern Atlantic, southward displacement of the intertropical convergence zone and weakened MOC. At the termination of the Younger Dryas and Heinrich event 1, intensification of cross-equatorial heat and salt transport caused centennial scale cooling and freshening of the western tropical Atlantic surface water. This study shows that the western tropical Atlantic served as a heat and salt reservoir during deglaciation. The sudden release of accumulated heat and salt at the end of Younger Drays and Heinrich event 1 may have contributed to the rapid reinvigoration of the Atlantic MOC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We use the oxygen isotopic composition of planktonic foraminifera Globigerinoides ruber (white) from Ocean Drilling Program Site 1058 in the subtropical northwestern Atlantic to construct a high-resolution (~800 year) climate record spanning the mid-Pleistocene climate transition (~410 ka to 1350 ka). We investigate whether or not millennial-scale instabilities in the proxy record are associated with the extent of continental glaciation. G. ruber d18O values display high-frequency fluctuations throughout the record, but the amplitude about mean glacial and interglacial d18O values increases at marine isotope stage (MIS) 22 (880 ka) and is highest during MIS 12. These observations support that millennial-scale climate instabilities are associated with ice sheet size. Time series analysis illustrates that these variations have significant concentration of spectral power centered on periods of ~10-12 ka and ~5 ka. The timing of these fluctuations agrees well, or coincides with, the periodicities of the second and fourth harmonics, respectively, of precessional forcing at the equator. An insolation-based origin of the millennial-scale instabilities would be independent of ice volume and explains the presence of these fluctuations before the mid-Pleistocene climate transition as well as during interglacial intervals (e.g., MIS 37 and 17). Because the amplitude of the millennial-scale variations increases during the mid-Pleistocene transition, feedback mechanisms associated with the growth of large, 100-ka-paced, polar ice sheets may be important amplifiers of regional surface water hydrographic changes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present 40 Sm-Nd isotope measurements of the clay-size (<2 µm) fractions of sediments from the Southern Greenland rise (ODP-646) that span the last 365 kyr. These data track changes in the relative supply of fine particles carried into the deep Labrador Sea by the Western Boundary Under Current (WBUC) back to the fourth glacial-interglacial cycles. Earlier studies revealed three general sources of particles to the core site: (i) Precambrian crustal material from Canada, Greenland, and/or Scandinavia (North American Shield - NAS), (ii) Palaeozoic or younger crustal material from East Greenland, NW Europe, and/or western Scandinavia (Young Crust - YC) and (iii) volcanic material from Iceland and the Mid-Atlantic Ridge (MAR). Clay-size fractions from glacial sediments have the lowest Nd isotopic ratios. Supplies of young crustal particles were similar during glacial oxygen isotope stages (OIS) 2, 6, and 10. In contrast the mean volcanic contributions decreased relative to old craton material from OIS 10 to OIS 6 and then from OIS 6 to OIS 2. The glacial OIS 8 interval displays a mean Sm/Nd ratio similar to those of interglacials OIS 1, 5, and 9. Compared with other interglacials, OIS 7 was marked by a higher YC contribution but a similar ~30% MAR supply. The overall NAS contribution dropped by a factor of 2 during each glacial/interglacial transition, with the MAR contribution broadly replacing it during interglacials. To decipher between higher supplies and/or dilution, particle fluxes from each end member were estimated. Glacial NAS fluxes were systematically higher than interglacial fluxes. During the time interval examined, fine particle supplies to the Labrador Sea were strongly controlled by proximal ice-margin erosion and thus echoed the glacial stage intensity. In contrast, the WBUC-carried MAR supplies from the eastern basins did not change significantly throughout the last 365 kyr, except for a marked increase in surface-sediments that suggests unique modern conditions. Distal WBUC-controlled inputs from the Northern and NE North Atlantic seem to have been less variable than proximal supplies linked with glacial erosion rate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the recent decade China witnessed an upsurge of privatization of small and medium state-owned enterprises (SOEs). In contrast to the consequent sharp reduction in the number of firms, however, the estimated share of broadly-defined SOEs that includes limited liabilities companies controlled by the State has shown virtually no sign of decline. We explain the backgrounds of this seemingly paradoxical persistence of state-ownership by looking into two distinctive types of large SOEs: traditional SOEs that remain dominant in oligopolistic industries and manager-controlled SOEs surviving in competitive industries. The two types exemplify several factors constraining further progress of SOE reform such as, financing the costs of restructuring, redefining the role of the State as the single dominant shareholder, and balancing the interests of the State and managers as entrepreneurs. Sorting these issues out will take time, which means that instabilities associated with state corporate ownership will remain in place in the foreseeable future in China.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Computer Fluid Dynamics tools have already become a valuable instrument for Naval Architects during the ship design process, thanks to their accuracy and the available computer power. Unfortunately, the development of RANSE codes, generally used when viscous effects play a major role in the flow, has not reached a mature stage, being the accuracy of the turbulence models and the free surface representation the most important sources of uncertainty. Another level of uncertainty is added when the simulations are carried out for unsteady flows, as those generally studied in seakeeping and maneuvering analysis and URANS equations solvers are used. Present work shows the applicability and the benefits derived from the use of new approaches for the turbulence modeling (Detached Eddy Simulation) and the free surface representation (Level Set) on the URANS equations solver CFDSHIP-Iowa. Compared to URANS, DES is expected to predict much broader frequency contents and behave better in flows where boundary layer separation plays a major role. Level Set methods are able to capture very complex free surface geometries, including breaking and overturning waves. The performance of these improvements is tested in set of fairly complex flows, generated by a Wigley hull at pure drift motion, with drift angle ranging from 10 to 60 degrees and at several Froude numbers to study the impact of its variation. Quantitative verification and validation are performed with the obtained results to guarantee their accuracy. The results show the capability of the CFDSHIP-Iowa code to carry out time-accurate simulations of complex flows of extreme unsteady ship maneuvers. The Level Set method is able to capture very complex geometries of the free surface and the use of DES in unsteady simulations highly improves the results obtained. Vortical structures and instabilities as a function of the drift angle and Fr are qualitatively identified. Overall analysis of the flow pattern shows a strong correlation between the vortical structures and free surface wave pattern. Karman-like vortex shedding is identified and the scaled St agrees well with the universal St value. Tip vortices are identified and the associated helical instabilities are analyzed. St using the hull length decreases with the increase of the distance along the vortex core (x), which is similar to results from other simulations. However, St scaled using distance along the vortex cores shows strong oscillations compared to almost constants for those previous simulations. The difference may be caused by the effect of the free-surface, grid resolution, and interaction between the tip vortex and other vortical structures, which needs further investigations. This study is exploratory in the sense that finer grids are desirable and experimental data is lacking for large α, especially for the local flow. More recently, high performance computational capability of CFDSHIP-Iowa V4 has been improved such that large scale computations are possible. DES for DTMB 5415 with bilge keels at α = 20º were conducted using three grids with 10M, 48M and 250M points. DES analysis for flows around KVLCC2 at α = 30º is analyzed using a 13M grid and compared with the results of DES on the 1.6M grid by. Both studies are consistent with what was concluded on grid resolution herein since dominant frequencies for shear-layer, Karman-like, horse-shoe and helical instabilities only show marginal variation on grid refinement. The penalties of using coarse grids are smaller frequency amplitude and less resolved TKE. Therefore finer grids should be used to improve V&V for resolving most of the active turbulent scales for all different Fr and α, which hopefully can be compared with additional EFD data for large α when it becomes available.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Linear three-dimensional modal instability of steady laminar two-dimensional states developing in a lid-driven cavity of isosceles triangular cross-section is investigated theoretically and experimentally for the case in which the equal sides form a rectangular corner. An asymmetric steady two-dimensional motion is driven by the steady motion of one of the equal sides. If the side moves away from the rectangular corner, a stationary three-dimensional instability is found. If the motion is directed towards the corner, the instability is oscillatory. The respective critical Reynolds numbers are identified both theoretically and experimentally. The neutral curves pertinent to the two configurations and the properties of the respective leading eigenmodes are documented and analogies to instabilities in rectangular lid-driven cavities are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The stability analysis of open cavity flows is a problem of great interest in the aeronautical industry. This type of flow can appear, for example, in landing gears or auxiliary power unit configurations. Open cavity flows is very sensitive to any change in the configuration, either physical (incoming boundary layer, Reynolds or Mach numbers) or geometrical (length to depth and length to width ratio). In this work, we have focused on the effect of geometry and of the Reynolds number on the stability properties of a threedimensional spanwise periodic cavity flow in the incompressible limit. To that end, BiGlobal analysis is used to investigate the instabilities in this configuration. The basic flow is obtained by the numerical integration of the Navier-Stokes equations with laminar boundary layers imposed upstream. The 3D perturbation, assumed to be periodic in the spanwise direction, is obtained as the solution of the global eigenvalue problem. A parametric study has been performed, analyzing the stability of the flow under variation of the Reynolds number, the L/D ratio of the cavity, and the spanwise wavenumber β. For consistency, multidomain high order numerical schemes have been used in all the computations, either basic flow or eigenvalue problems. The results allow to define the neutral curves in the range of L/D = 1 to L/D = 3. A scaling relating the frequency of the eigenmodes and the length to depth ratio is provided, based on the analysis results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Some floating-liquid-zone experiments performed under reduced-gravity conditions are reviewed. Several types of instabilities are discussed, together with the relevant parameters controlling them. It is shown that the bounding values of these parameters could be increased, by orders of magnitude in several instances, by selecting appropriate liquids. Two of the many problems that a Fluid-Physics Module, devised to perform experiments on floating zones in a space laboratory, would involve are discussed: namely (i) procedures for disturbing the zoneunder controlled conditions, and (ii) visualisation of the inner flow pattern. Several topics connected with the nonisothermal nature and the phase-changes of floating zones are presented. In particular, a mode of propagation through the liquid zone for disturbances which could appear in the melting solid/liquid interface is suggested. Although most research on floating liquid zones is aimed at improving the crystal-growth process, some additional applications are suggested.