980 resultados para IMMUNOFLUORESCENCE
Resumo:
A 15-year-old boy was admitted for vomiting, diarrhea, fatigue, crampy abdominal pain and oliguria. A renal failure was diagnosed (creatinine 2523 μmol/, urea 53,1 mmol/l) with severe aregenerative anemia (80 g/l), metabolic acidosis, hyperkalemia, elevated inflammatory markers and normal platelet count. A nephrotic proteinuria was noticed (350 g/mol). Patient's creatinine was normal 4 months before. The diagnosis of rapidly progressive glomerulonephritis was suspected. C3 and C4 were normal, ANA and ANCA were negative; anti-glomerular basement membrane antibody (anti-GBM) was positive (1/320) which lead to the diagnosis of Goodpasture's disease. Chest X-ray showed bilateral hilar infiltration and CT-scan revealed multiple alveolar haemorrhages, confirmed by broncho-alveolar lavage. Renal ultrasound showed swollen and hyperechogenous kidneys with loss of corticomedullary differentiation. Renal biopsy revealed a global extracapillary necrotising glomerulonephritis, with IgG lining the membrane at immunofluorescence. The patient was treated with continuous venovenous hemodia- filtration, plasmapheresis and immunosuppressive therapy (cyclophosphamid and corticoids) which lead to normalisation of anti-GBM level and favourable respiratory evolution with no sequelae. The renal evolution was unfavourable and the patient developed end stage renal disease and was treated with haemodialysis. Goodpasture's disease is an autoimmune process in which anti-GBM are produced against collagen IV present in the kidneys and pulmonary alveolae, resulting in acute or rapidly progressive glomerulonephritis and altering the pulmonary alveolae. It is a rare disease concerning mostly infants and young adults. Clinical presentation consists in an acute renal failure with proteinuria. Pulmonary symptoms (60-70% of the total cases) are dyspnea, cough, and haemoptysis. Diagnosis is made with the dosage of immunological anti-GBM and with renal biopsy. Factors of poor prognosis are initial oliguria, alteration of >50% of the glomerulus, very high creatinine or need of dialysis. Anti-GBM dosage is used for follow up. Patients are treated with immunosuppressive therapy for 6 to 9 months and plasmapheresis. Few recurrences are seen. Goodpasture's disease should be evoqued whenever a young patient is seen with glomerulonephritis, especially if pulmonary abnormalities are present. The disease requires an aggressive treatment in order to prevent respiratory and kidney failure.
Resumo:
Either 200 or 400 syngeneic islets were transplanted under the kidney capsule of normal or streptozocin-induced diabetic B6/AF1 mice. The diabetic mice with 400 islets became normoglycemic, but those with 200 islets, an insufficient number, were still diabetic after the transplantation (Tx). Two weeks after Tx, GLUT2 expression in the islet grafts was evaluated by immunofluorescence and Western blots, and graft function was examined by perfusion of the graft-bearing kidney. Immunofluorescence for GLUT2 was dramatically reduced in the beta-cells of grafts with 200 islets exposed to hyperglycemia. However, it was plentiful in grafts with 400 islets in a normoglycemic environment. Densitometric analysis of Western blots on graft homogenates demonstrated that GLUT2 protein levels in the islets, when exposed to chronic hyperglycemia for 2 weeks, were decreased to 16% of those of normal recipients. Moreover, these grafts had defective glucose-induced insulin secretion, while the effects of arginine were preserved. We conclude that GLUT2 expression in normal beta-cells is promptly down-regulated during exposure to hyperglycemia and may contribute to the loss of glucose-induced secretion of diabetes.
Resumo:
Aggregate cultures of mixed glial cells, as well as of enriched astrocytes and oligodendrocytes were prepared, and maintained in serum-free medium for up to 25 days. Biochemical measurements of both neuron-specific and glia-specific enzyme activities showed that these three types of aggregate cultures were virtually devoid of neurons. Astrocyte-enriched cultures were greater than 95% pure, with oligodendrocytes as the only apparent contaminant, whereas oligodendrocyte-enriched cultures still contained a considerable proportion of astrocytes. In all these neuron-free aggregate cultures both astrocytes and oligodendrocytes attained a high degree of maturation. These findings were confirmed by morphological examinations, and by immunofluorescence studies. Furthermore, ultrastructural as well as immunocytochemical investigations using antibodies to myelin basic protein revealed that all three types of glial cell aggregate cultures contained myelin membranes, indicating that the presence of axons is not a prerequisite for the formation of myelin.
Resumo:
The presynaptic plasma membrane (PSPM) of cholinergic nerve terminals was purified from Torpedo electric organ using a large-scale procedure. Up to 500 g of frozen electric organ were fractioned in a single run, leading to the isolation of greater than 100 mg of PSPM proteins. The purity of the fraction is similar to that of the synaptosomal plasma membrane obtained after subfractionation of Torpedo synaptosomes as judged by its membrane-bound acetylcholinesterase activity, the number of Glycera convoluta neurotoxin binding sites, and the binding of two monoclonal antibodies directed against PSPM. The specificity of these antibodies for the PSPM is demonstrated by immunofluorescence microscopy.
Resumo:
Peripheral nerve regeneration following injury occurs spontaneously, but many of the processes require metabolic energy. The mechanism of energy supply to axons has not previously been determined. In the central nervous system, monocarboxylate transporter 1 (MCT1), expressed in oligodendroglia, is critical for supplying lactate or other energy metabolites to axons. In the current study, MCT1 is shown to localize within the peripheral nervous system to perineurial cells, dorsal root ganglion neurons, and Schwann cells by MCT1 immunofluorescence in wild-type mice and tdTomato fluorescence in MCT1 BAC reporter mice. To investigate whether MCT1 is necessary for peripheral nerve regeneration, sciatic nerves of MCT1 heterozygous null mice are crushed and peripheral nerve regeneration was quantified electrophysiologically and anatomically. Compound muscle action potential (CMAP) recovery is delayed from a median of 21days in wild-type mice to greater than 38days in MCT1 heterozygote null mice. In fact, half of the MCT1 heterozygote null mice have no recovery of CMAP at 42days, while all of the wild-type mice recovered. In addition, muscle fibers remain 40% more atrophic and neuromuscular junctions 40% more denervated at 42days post-crush in the MCT1 heterozygote null mice than wild-type mice. The delay in nerve regeneration is not only in motor axons, as the number of regenerated axons in the sural sensory nerve of MCT1 heterozygote null mice at 4weeks and tibial mixed sensory and motor nerve at 3weeks is also significantly reduced compared to wild-type mice. This delay in regeneration may be partly due to failed Schwann cell function, as there is reduced early phagocytosis of myelin debris and remyelination of axon segments. These data for the first time demonstrate that MCT1 is critical for regeneration of both sensory and motor axons in mice following sciatic nerve crush.
Resumo:
Distribution of myosin, tubulin and laminin immunoreactive cells in the area opaca of the young chick embryo (Stages 4-8 HH) was studied using immunofluorescence technique. For the three markers, the number of stained cells increased with the age of the blastoderm. Cells stained for tubulin and laminin, were distributed throughout the area opaca, showing no supracellular organization. On the contrary, the cells stained for myosin became organized in a ring surrounding the area pellucida. This pattern appeared at the stage 6. Such an heterogenous distribution of the markers suggests a functional diversification of the ectodermal cell monolayer forming at these early developmental stages the area opaca. This idea is also supported by the results of autoradiography for tritiated thymidin which showed that the edge cells did not synthetize DNA and consequently did not divide.
Resumo:
GLUTX1 or GLUT8 is a newly characterized glucose transporter isoform that is expressed at high levels in the testis and brain and at lower levels in several other tissues. Its expression was mapped in the testis and brain by using specific antibodies. In the testis, immunoreactivity was expressed in differentiating spermatocytes of type 1 stage but undetectable in mature spermatozoa. In the brain, GLUTX1 distribution was selective and localized to a variety of structures, mainly archi- and paleocortex. It was found in hippocampal and dentate gyrus neurons as well as amygdala and primary olfactory cortex. In these neurons, its location was close to the plasma membrane of cell bodies and sometimes in proximal dendrites. High GLUTX1 levels were detected in the hypothalamus, supraoptic nucleus, median eminence, and the posterior pituitary. Neurons of these areas synthesize and secrete vasopressin and oxytocin. As shown by double immunofluorescence microscopy and immunogold labeling, GLUTX1 was expressed only in vasopressin neurons. By immunogold labeling of ultrathin cryosections microscopy, GLUTX1 was identified in dense core vesicles of synaptic nerve endings of the supraoptic nucleus and secretory granules of the vasopressin positive neurons. This localization suggests an involvement of GLUTX1 both in specific neuron function and endocrine mechanisms.
Resumo:
In this study we focused our attention on the behavior of four nuclear matrix proteins during the various stages of apoptosis in the HL-60 cell line exposed to the DNA topoisomerase I inhibitor, camptothecin. We have examined the following antigens by immunocytochemical techniques: (i) the 180-kDa nucleolar isoform of DNA topoisomerase II; (ii) a 126-kDa polypeptide of nuclear bodies; (iii) a 125-kDa protein; and (iv) a 160-kDa polypeptide which are known to be components of the matrix inner network. Indirect immunofluorescence experiments were performed to follow these nuclear matrix antigens during apoptosis. Moreover, the ultrastructural localization of both 125- and 160-kDa proteins was investigated by electron microscope immunocytochemistry with gold-conjugated secondary antibodies. While the antibody to the nucleolar isoform of DNA topoisomerase II gave a fluorescent pattern that was well-maintained until the late phases of apoptosis, the other three nuclear antigens showed marked modifications in their distribution. A common feature, particularly evident for 125- and 160-kDa proteins, was their absence from cap-shaped chromatin marginations, whereas they were present in the areas of remaining decondensed chromatin. The 126-kDa polypeptide concentrated progressively in an irregular mass at the opposite side of the crescentic caps and then broke up in fine spots. The 125- and 160-kDa proteins localized in the nucleolus and precisely within certain granules which are known to appear in the nucleolar area after camptothecin administration. These results show that, in addition to the well-known chromatin changes, nuclear organization undergoes other rearrangements during the apoptotic process.
Resumo:
Claudin-1 (CLDN1) is a structural tight junction (TJ) protein and is expressed in differentiating keratinocytes and Langerhans cells in the epidermis. Our objective was to identify immunoreactive CLDN1 in human epidermal Langerhans cells and to examine the pattern of epidermal Langerhans cells in genetic human CLDN1 deficiency [neonatal ichthyosis, sclerosing cholangitis (NISCH) syndrome]. Epidermal cells from healthy human skin labelled with CLDN1-specific antibodies were analysed by confocal laser immunofluorescence microscopy and flow cytometry. Skin biopsy sections of two patients with NISCH syndrome were stained with an antibody to CD1a expressed on epidermal Langerhans cells. Epidermal Langerhans cells and a subpopulation of keratinocytes from healthy skin were positive for CLDN1. The gross number and distribution of epidermal Langerhans cells of two patients with molecularly confirmed NISCH syndrome, however, was not grossly altered. Therefore, CLDN1 is unlikely to play a critical role in migration of Langerhans cells (or their precursors) to the epidermis or their positioning within the epidermis. Our findings do not exclude a role of this TJ molecule once Langerhans cells have left the epidermis for draining lymph nodes.
Resumo:
Background : Numerous studies have shown that immune cells infiltrate the spinal cord after peripheral nerve injury and that they play a major contribution to sensory hypersensitivity in rodents. In particular, the role of monocyte-derived cells and T lymphocytes seems to be prominent in this process. This exciting new perspective in research on neuropathic pain opens many different areas of work, including the understanding of the function of these cells and how they impact on neural function. However, no systematic description of the time course or cell types that characterize this infiltration has been published yet, although this seems to be the rational first step of an overall understanding of the phenomenon. Objective : Describe the time course and cell characteristics of T lymphocyte infiltration in the spinal cord in the Spared Nerve Injury (SNI) model of neuropathic pain in rats. Methods : Collect of lumbar spinal cords of rats at days 2, 7, 21 and 40 after SNI or sham operation (n=4). Immunofluorescence detecting different proteins of T cell subgroups (CD2+CD4+, CD2+CD8+, Th1 markers, Th2 markers, Th17 markers). Quantification of the infiltration rate of the different subgroups. Expected results : First, we expect to see an infiltration of T cells in the spinal cord ipsilateral to nerve injury, higher in SNI rats than in sham animals. Second, we anticipate that different subtypes of T cells penetrate at different time points. Finally, the number of T lymphocytes are expected to decrease at the latest time point, showing a resolution of the process underlying their infiltrating the spinal cord in the first place. Impact : A systematic description of the infiltration of T cells in the spinal cord after peripheral nerve injury is needed to have a better understanding of the role of immune cells in neuropathic pain. The time course that we want to establish will provide the scientific community with new perspectives. First, it will confirm that T cells do indeed infiltrate the spinal cord after SNI in rats. Second, the type of T cells infiltrating at different time points will give clues about their function, in particular their inflammatory or anti-inflammatory profile. From there on, other studies could be lead, investigating the functional side of the specific subtypes put to light by us. Ultimately, this could lead to the discovery of new drugs targeting T cells or their infiltration, in the hope of improving neuropathic pain.
Resumo:
Autoantibodies are frequently determined in unclear clinical situations and in the context of an inflammatory syndrome. The aim of this article is not to review all autoantibodies in details, but to discuss those used in clinical practice by describing their methods of detection and interpretation. Thus we will focus on antinuclear antibodies (ANA), which are typically associated with connective tissue diseases, as well as anti-neutrophil cytoplasmic antibodies (ANCA), which are useful in the diagnosis of ANCA-associated vasculitides. Due to its high sensitivity indirect immunofluorescence is used as a screening test; when positive, ELISA is performed to search for antibodies more specifically associated with certain auto-immune diseases.
Resumo:
BACKGROUND: The goal of this study was to characterize the performance of fluorine-19 ((19)F) cardiac magnetic resonance (CMR) for the specific detection of inflammatory cells in a mouse model of myocarditis. Intravenously administered perfluorocarbons are taken up by infiltrating inflammatory cells and can be detected by (19)F-CMR. (19)F-labeled cells should, therefore, generate an exclusive signal at the inflamed regions within the myocardium. METHODS AND RESULTS: Experimental autoimmune myocarditis was induced in BALB/c mice. After intravenous injection of 2×200 µL of a perfluorocarbon on day 19 and 20 (n=9) after immunization, in vivo (19)F-CMR was performed at the peak of myocardial inflammation (day 21). In 5 additional animals, perfluorocarbon combined with FITC (fluorescein isothiocyanate) was administered for postmortem immunofluorescence and flow-cytometry analyses. Control experiments were performed in 9 animals. In vivo (19)F-CMR detected myocardial inflammation in all experimental autoimmune myocarditis-positive animals. Its resolution was sufficient to identify even small inflammatory foci, that is, at the surface of the right ventricle. Postmortem immunohistochemistry and flow cytometry confirmed the presence of perfluorocarbon in macrophages, dendritic cells, and granulocytes, but not in lymphocytes. The myocardial volume of elevated (19)F signal (rs=0.96; P<0.001), the (19)F signal-to-noise ratio (rs=0.92; P<0.001), and the (19)F signal integral (rs=0.96; P<0.001) at day 21 correlated with the histological myocarditis severity score. CONCLUSIONS: In vivo (19)F-CMR was successfully used to visualize the inflammation specifically and robustly in experimental autoimmune myocarditis, and thus allowed for an unprecedented insight into the involvement of inflammatory cells in the disease process.
Resumo:
Tumor-host interaction is a key determinant during cancer progression, from primary tumor growth to metastatic dissemination. At each step, tumor cells have to adapt to and subvert different types of microenvironment, leading to major phenotypic and genotypic alterations that affect both tumor and surrounding stromal compartments. Understanding the molecular mechanisms that govern tumor-host interplay may be essential for better comprehension of tumorigenesis in an effort to improve current anti-cancer therapies. The present work is composed of two projects that address tumor-host interactions from two different perspectives, the first focusing on the characterization of tumor-associated stroma and the second on membrane trafficking in tumor cells. Part 1. To selectively address stromal gene expression changes during cancer progression, oligonucleotide-based Affymetrix microarray technology was used to analyze the transcriptomes of laser-microdissected stromal cells derived from invasive human breast and prostate carcinoma. Comparison showed that invasive breast and prostate cancer elicit distinct, tumor-specific stromal responses, with a limited panel of shared induced and/or repressed genes. Both breast and prostate tumor-specific deregulated stromal gene sets displayed statistically significant survival-predictive ability for their respective tumor type. By contrast, a stromal gene signature common to both tumor types did not display prognostic value, although expression of two individual genes within this common signature was found to be associated with patient survival. Part 2. GLG1 is known as an E-selectin ligand and an intracellular FGF receptor, depending on cell type and context. Immunohistochemical and immunofluorescence analyses showed that GLG1 is primarily localized in the Golgi of human tumor cells, a central location in the biosynthetic/secretory pathways. GLG1 has been shown to interact with and to recruit the ARF GEF BIGI to the Golgi membrane. Depletion of GLG1 or BIGI markedly reduced ARF3 membrane localization and activation, and altered the Golgi structure. Interestingly, these perturbations did not impair constitutive secretion in general, but rather seemed to impair secretion of a specific subset of proteins that includes MMP-9. Thus, GLG1 coordinates ARF3 activation by recruiting BIGI to the Golgi membrane, thereby affecting secretion of specific molecules. - Les interactions tumeur-hôte constituent un élément essentiel à la progression tumorale, de la croissance de la tumeur primaire à la dissémination des métastases. A chaque étape, les cellules tumorales doivent s'adapter à différents types de microenvironnement et les détourner à leur propre avantage, donnant lieu à des altérations phénotypiques et génotypiques majeures qui affectent aussi bien la tumeur elle-même que le compartiment stromal environnant. L'étude des mécanismes moléculaires qui régissent les interactions tumeur-hôte constitue une étape essentielle pour une meilleure compréhension du processus de tumorigenèse dans le but d'améliorer les thérapies anti cancer existantes. Le travail présenté ici est composé de deux projets qui abordent la problématique des interactions tumeur-hôte selon différentes perspectives, le premier se concentrant sur la caractérisation du stroma tumoral et le second sur le trafic intracellulaire des cellules tumorales. Partie 1. Pour examiner les changements d'expression des gènes dans le stroma en réponse à la progression du cancer, des puces à ADN Affymetrix ont été utilisées afin d'analyser les transcriptomes des cellules stromales issues de carcinomes invasifs du sein et de la prostate et collectées par microdissection au laser. L'analyse comparative a montré que les cancers invasifs du sein et de la prostate provoquent des réponses stromales spécifiques à chaque type de tumeur, et présentent peu de gènes induits ou réprimés de façon similaire. L'ensemble des gènes dérégulés dans le stroma associé au cancer du sein, ou à celui de la prostate, présente une valeur pronostique pour les patients atteints d'un cancer du sein, respectivement de la prostate. En revanche, la signature stromale commune aux deux types de cancer n'a aucune valeur prédictive, malgré le fait que l'expression de deux gènes présents dans cette liste soit liée à la survie des patients. Partie 2. GLG1 est connu comme un ligand des sélectines E ainsi que comme récepteur intracellulaire pour des facteurs de croissances FGFs selon le type de cellule dans lequel il est exprimé. Des analyses immunohistochimiques et d'immunofluorescence ont montré que dans les cellules tumorales, GLG1 est principalement localisé au niveau de l'appareil de Golgi, une place centrale dans la voie biosynthétique et sécrétoire. Nous avons montré que GLG1 interagit avec la protéine BIGI et participe à son recrutement à la membrane du Golgi. L'absence de GLG1 ou de BIGI réduit drastiquement le pool d'ARF3 associé aux membranes ainsi que la quantité d'ARF3 activés, et modifie la structure de l'appareil de Golgi. Il est particulièrement intéressant de constater que ces perturbations n'ont pas d'effet sur la sécrétion constitutive en général, mais semblent plutôt affecter la sécrétion spécifique d'un sous-groupe défini de protéines comprenant MMP-9. GLG1 coordonne donc l'activation de ARF3 en recrutant BIGI à la membrane du Golgi, agissant par ce moyen sur la sécrétion de molécules spécifiques.
Resumo:
Background: Citrobacter rodentium is a natural mouse pathogen that is genetically closelyrelated to the human enteric pathogens enteropathogenic and enterohemorrhagic E. coli.Among the repertoire of conserved virulence factors that these pathogens deliver via typeIII secretion, Tir and EspF are responsible for the formation of characteristic actin-richpedestals and disruption of tight junction integrity, respectively. There is evidence In Vitrothese effectors accomplish this, at least in part, by subverting the normal host cellularfunctions of N-WASP, a critical regulator of branched chain actin assembly. Although NWASPhas been shown to be involved in pedestal formation In Vitro, the requirements ofN-WASP-mediated actin pedestals for intestinal colonization by attaching/effacing (A/E)pathogens In Vivo is not known. Furthermore, it is not known whether N-WASP is requiredfor EspF-mediated tight junction disruption. Methods: To investigate the role of N-WASPin the gut epithelium, we generated mice with intestine-specific deletion of N-WASP(iNWKO), by mating mice homozygous for a floxed N-WASP allele (N-WASPL2L/L2L) tomice expressing Cre recombinase under the villin promoter. Separately housed groups ofWT and iNWKO mice were inoculated with 5x108 GFP-expressing C. rodentium by intragastriclavage. Stool was collected 2, 4, 7, and 12 days after infection, and recoverablecolony forming units (CFUs) of C. rodentium were quantified by plating serial dilutions ofhomogenized stool on MacConkey's agar. GFP+ colonies were counted after 24 hoursincubation at 37°C. The presence of actin pedestals was investigated by electron microscopy(EM), and tight junction morphology was assessed by immunofluorescence staining ofoccludin, ZO-1 and claudin-2. Results: C. rodentium infection did not result in mortalityin WT or iNWKO mice. Compared to controls, iNWKO mice exhibited higher levels ofbacterial shedding during the first 4 days of infection (day 4 average: WT 5.2x104 CFU/gvs. iNWKO 4.7x105 CFU/g, p=0.08), followed by a more rapid clearance of C. rodentium, (day7-12 average: WT 2x106 CFU/g vs. iNWKO 2.7x105, p=0.01). EM and immunofluorescencerevealed the complete lack of actin pedestals in iNWKO mice and no mucosa-associatedGFP+ C. rodentium by day 7. WT controls exhibited tight junction disruption, reflected byaltered distribution of ZO-1, whereas iNWKO mice had no change in the pattern of ZO-1.Conclusion: Intestinal N-WASP is required for actin pedestal formation by C. rodentium InVivo, and ablation of N-WASP is associated with more rapid bacterial clearance and decreasedability of C. rodentium to disrupt intercellular junctions.
Resumo:
La douleur neuropathique est une forme de douleur chronique apparaissant suite à des lésions du système nerveux somato-sensoriel. Caractérisée par une plasticité neuronale inadapté, elle est très souvent intense, invalidante, associe des symptômes comme l'allodynie ou l' hyperalgésie et reste difficile à traiter avec les agents thérapeutiques actuels. Le thème de mon travail de thèse se concentre sur des mécanismes moléculaires de modulation des canaux sodiques voltage-dépendants suite à une lésion du nerf périphérique. Dans l'article présenté en annexe, j'ai focalisé mon travail sur une protéine, Nedd4-2, qui est une ligase ubiquitine. Elle a pour rôle de réguler et d'internaliser dans la cellule des protéines membranaires dont les canaux sodiques. Suite aux lésions du système nerveux périphérique, il existe une hyperexcitabilité neuronale engendrée notamment par un surplus et une dysrégulation des canaux sodiques à la membrane cellulaire. Dans 1 'hypothèse que l'ubiquitine ligase Nedd4-2 soit présente dans les neurones sensitifs primaires et ait un rôle dans la régulation des canaux sodiques, nous avons identifié cette protéine dans les neurones nociceptifs primaires du rat. En utilisant des techniques de Western Blot et d'immunohistochimie, j'ai trouvé que Nedd4-2 est présente dans presque 50% des neurones du ganglion spinal et ces neurones sont principalement des neurones nociceptifs. Dans un modèle expérimental de douleur neuropathique (SN I, pour spared nerve injury), Nedd4-2 se retrouve significativement diminuée dans le tissu du ganglion spinal. J'ai également investigué 1' expression de 2 isoformes des canaux sodiques connues pour leur implication dans la douleur, Navl.7 et Navl.8, et ces 2 isoformes se retrouvent dans les mêmes neurones que Nedd4-2. La caractérisation détaillée est décrite dans le manuscrit: «Neuronal expression of the ubiquitin ligase Nedd4-2 in rat dorsal root ganglia: modulation in the SNI model of neuropathic pain; Cachemaille M, Laedermann CJ, Pertin M, Abriel H, Gasselin RD, Decosterd 1.» Les résultats obtenus indiquent que Nedd4-2, en étant downrégulé après une lésion nerveuse, pourrait ainsi contribuer à une augmentation des canaux sodiques fonctionnels à la membrane. Ainsi Nedd4-2 pourrait être proposée comme cible thérapeutique de manière alternative aux bloqueurs de canaux sodiques. Ce travail a permis l'initiation d'autres expériences. J'ai contribué activement à la construction de vecteurs viraux type adéno-associé recombinant (rAA V2/6) et surexprimé la protéine in vivo dans les ganglions spinaux. Cette partie de mon travail se trouve intégrée dans d'autres travaux de mon laboratoire d'accueil qui a pu démontrer les effets fonctionnels de cette approche sur les courants sodiques enregistrés par électrophysiologie et une diminution de la douleur neuropathique chez la souris. - Abstract-Neuronal hyperexcitability following peripheral nerve lesions may stem from altered activity of voltagegated sodium channels (VGSCs), which gives rise toallodynia or hyperalgesia. In vitro, the ubiquitin ligase Nedd4-2 is a negative regulator of VGSC a-subunits (Nav), in particular Nav1.7, a key actor in nociceptor excitability. We therefore studied Nedd4-2 in rat nociceptors, its co-expression with Nav1.7 and Nav1.8, and its regulation in pathology. Adult rats were submitted to the spared nerve injury (SNI) model of neuropathic pain or injected with complete Freund's adjuvant (CFA), a model of inflammatory pain. L4 dorsal root ganglia (DRG) were analyzed in shamoperated animals, seven days after SNI and 48 h after CFA with immunofluorescence and Western blot. We observed Nedd4-2 expression in almost 50% of DRG neurons, mostly small and medium-sized. A preponderant localization is found in the non-peptidergic sub-population. Additionally, 55.7± 2.7% and 55.0 ±3.6% of Nedd4-2-positive cells are co-labeled with Nav1.7 and Nav1.8 respectively. SNI significantly decreases the proportion of Nedd4-2-positive neurons from 45.9± 1.9% to 33.5± 0.7% (p < 0.01) and the total Nedd4-2 protein to 44%± 0.13% of its basal level (p <0.01, n = 4 animals in each group, mean± SEM). In contrast, no change in Nedd4-2 was found after peripheral inflammation induced by CFA. These results indicate that Nedd4-2 is present in nociceptive neurons, is downregulated after peripheral nerve injury, and might therefore contribute to the dysregulation of Navs involved in the hyperexcitability associated with peripheral nerve injuries.